Nanoscale 3D quantitative imaging of 1.88 Ga Gunflint microfossils reveals novel insights into taphonomic and biogenic characters (2020)
- Authors:
- USP affiliated authors: TRINDADE, RICARDO IVAN FERREIRA DA - IAG ; PERES, LARA MALDANIS CERQUEIRA - IFSC ; JAQUETO, PLINIO FRANCISCO - IAG
- Unidades: IAG; IFSC
- DOI: 10.1038/s41598-020-65176-w
- Subjects: NANOTECNOLOGIA; QUÍMICA; ESPECTROSCOPIA
- Agências de fomento:
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Financiado pelo Instituto Serrapilheira
- Financiado pelo CNRS
- Financiado pelo CNES
- Financiado pelo MASE
- Financiado pela European Commission
- Financiado pela SNSF
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Scientific Reports
- ISSN: 2045-2322
- Volume/Número/Paginação/Ano: v. 10, p. 8163-1-8163-9, May 2020
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by
-
ABNT
PERES, Lara Maldanis Cerqueira; HICKMAN-LEWIS, K.; VEREZHAK, M.; et al. Nanoscale 3D quantitative imaging of 1.88 Ga Gunflint microfossils reveals novel insights into taphonomic and biogenic characters. Scientific Reports, London, Nature, v. 10, p. 8163-1-8163-9, 2020. Disponível em: < http://dx.doi.org/10.1038/s41598-020-65176-w > DOI: 10.1038/s41598-020-65176-w. -
APA
Peres, L. M. C., Hickman-Lewis, K., Verezhak, M., Gueriau, P., Guizar-Sicairos, M., Jaqueto, P., et al. (2020). Nanoscale 3D quantitative imaging of 1.88 Ga Gunflint microfossils reveals novel insights into taphonomic and biogenic characters. Scientific Reports, 10, 8163-1-8163-9. doi:10.1038/s41598-020-65176-w -
NLM
Peres LMC, Hickman-Lewis K, Verezhak M, Gueriau P, Guizar-Sicairos M, Jaqueto P, Trindade RIF da, Rossi AL, Berenguer F, Westall F, Bertrand L, Galante D. Nanoscale 3D quantitative imaging of 1.88 Ga Gunflint microfossils reveals novel insights into taphonomic and biogenic characters [Internet]. Scientific Reports. 2020 ; 10 8163-1-8163-9.Available from: http://dx.doi.org/10.1038/s41598-020-65176-w -
Vancouver
Peres LMC, Hickman-Lewis K, Verezhak M, Gueriau P, Guizar-Sicairos M, Jaqueto P, Trindade RIF da, Rossi AL, Berenguer F, Westall F, Bertrand L, Galante D. Nanoscale 3D quantitative imaging of 1.88 Ga Gunflint microfossils reveals novel insights into taphonomic and biogenic characters [Internet]. Scientific Reports. 2020 ; 10 8163-1-8163-9.Available from: http://dx.doi.org/10.1038/s41598-020-65176-w - 3D X-ray imaging of Precambrian microfossils: evaluating biogenicity at the nanoscale with ptychographic X-ray computed tomography
- Magnetismo de um espeleotema do centro-oeste do Brasil e suas implicações paleoclimáticas
- Mineralogia magnética em um espeleotema do centro-oete do Brasil: resultados preliminares
- Mineralogia magnética em um espeleotema do Centro-Oeste do Brasil: resultados preliminares
- Correlating morphology and geochemistry at the nanoscale with synchrotron imaging
- Centennial-scale solar forcing of the South American Monsoon System recorded in stalagmites
- Linking speleothem and soil magnetism in the Pau d’Alho cave (central South America)
- Reconstruindo a geografia da terra no fim do proterozóico
- Magnetic anisotropy and crystallographic axes orientations in single-crystals combining VSM and EBSD measurements
- Archeointensity in northeast Brazil over the past five centuries
Informações sobre o DOI: 10.1038/s41598-020-65176-w (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
2997733.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
Referências citadas na obra
Nutman, A. P., Bennett, V. C., Friend, C. R. L., Van Kranendonk, M. J. & Chivas, A. R. Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 1–12, https://doi.org/10.1038/nature19355 (2016). |
---|
Dodd, M. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017). |
Allwood, A. C., Rosing, M. T., Flannery, D. T., Hurowitz, J. A. & Heirwegh, C. M. Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature, https://doi.org/10.1038/s41586-018-0610-4 (2018). |
Schopf, J. W. Microfossils of the Early Archean Apex chert: new evidence of the antiquity of life. Science (New York, N.Y.) 260, 640–646 (1993). |
Brasier, M. D., McLoughlin, N., Green, O. & Wacey, D. A fresh look at the fossil evidence for early Archaean cellular life. Philosophical Transactions of the Royal Society B: Biological Sciences 361, 887–902 (2006). |
Wacey, D. Early Life on Earth. 31, (Springer Netherlands, 2009). |
Brasier, M. D. et al. Questioning the evidence for Earth’s oldest fossils. Nature 416, 76–81 (2002). |
Ohtomo, Y., Kakegawa, T., Ishida, A., Nagase, T. & Rosing, M. T. Evidence for biogenic graphite in early archaean isua metasedimentary rocks. Nature Geoscience 7, 25–28 (2014). |
French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proceedings of the National Academy of Sciences of the United States of America 112, 5915–5920 (2015). |
Lemelle, L. et al. X-ray imaging techniques and exobiology. Journal de Physique IV (Proceedings) 104, 377–380 (2003). |
Cady, S. L., Farmer, J. D., Grotzinger, J. P., Schopf, J. W. & Steele, A. Morphological biosignatures and the search for life on Mars. Astrobiology 3, 351–368 (2003). |
Schopf, J. W., Kudryavtsev, A. B., Agresti, D. G., Wdowiak, T. J. & Czaja, A. D. Laser–Raman imagery of Earth’s earliest fossils. Nature 416, 73–76 (2002). |
Wacey, D., Fisk, M., Saunders, M., Eiloart, K. & Kong, C. Critical testing of potential cellular structures within microtubes in 145 Ma volcanic glass from the Argo Abyssal Plain. Chemical Geology 466, 575–587 (2017). |
Schopf, J. W. & Kudryavtsev, A. B. Biogenicity of Earth’s earliest fossils: A resolution of the controversy. Gondwana Research 22, 761–771 (2012). |
Alleon, J. et al. Molecular preservation of 1.88 Ga Gunflint organic microfossils as a function of temperature and mineralogy. Nature Communications 7, 11977 (2016). |
Lepot, K. et al. Iron minerals within specific microfossil morphospecies of the 1.88 Ga Gunflint Formation. Nature Communications 8, (2017). |
Wacey, D., Battison, L., Garwood, R. J., Hickman-Lewis, K. & Brasier, M. D. Advanced analytical techniques for studying the morphology and chemistry of Proterozoic microfossils. Geological Society, London, Special Publications 448, 81–104 (2017). |
Wacey, D. et al. Taphonomy of very ancient microfossils from the ∼3400 Ma Strelley Pool Formation and ∼1900 Ma Gunflint Formation: New insights using a focused ion beam. Precambrian Research 220–221, 234–250 (2012). |
Brasier, M. D., Antcliffe, J., Saunders, M. & Wacey, D. Changing the picture of Earth’s earliest fossils (3.5–1.9 Ga) with new approaches and new discoveries. Proceedings of the National Academy of Sciences 112, 4859–4864 (2015). |
Dierolf, M. et al. Ptychographic X-ray computed tomography at the nanoscale. Nature 467, 436–439 (2010). |
Holler, M. et al. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution. Scientific reports 4, 3857 (2014). |
Diaz, A. et al. Three-dimensional mass density mapping of cellular ultrastructure by ptychographic X-ray nanotomography. Journal of Structural Biology 192, 461–469 (2015). |
Diaz, A. et al. Quantitative x-ray phase nanotomography. Physical Review B 85, 1–4 (2012). |
De Boever, W. et al. Characterization of composition and structure of clay minerals in sandstone with ptychographic X-ray nanotomography. Applied Clay Science 118, 258–264 (2015). |
Moreau, J. W. & Sharp, T. G. A Transmission Electron Microscopy Study of Silica and Kerogen Biosignatures in ~1.9 Ga Gunflint Microfossils. Astrobiology 4, 196–210 (2004). |
Schelble, R. T., Westall, F. & Allen, C. C. ∼1.8 Ga iron-mineralized microbiota from the Gunflint Iron Formation, Ontario, Canada: Implications for Mars. Advances in Space Research 33, 1268–1273 (2004). |
Shapiro, R. S. & Konhauser, K. O. Hematite-coated microfossils: Primary ecological fingerprint or taphonomic oddity of the Paleoproterozoic? Geobiology 13, 209–224 (2015). |
Barghoorn, E. S. & Tyler, S. A. Microorganisms from the Gunflint Chert: These structurally preserved Precambrian fossils from Ontario are the most ancient organisms known. Science 147, 563–575 (1965). |
Jagadisan, A., Yang, A. & Heidari, Z. Experimental quantification of the impact of thermal maturity on kerogen density. Petrophysics 58, 603–612 (2017). |
Okiongbo, K. S., Aplin, A. C. & Larter, S. R. Changes in Type II Kerogen Density as a Function of Maturity: Evidence from the Kimmeridge Clay Formation. 2495–2499 (2005). |
Bousige, C. et al. Realistic molecular model of kerogen’s nanostructure. Nature Materials 15, 576–582 (2016). |
Vandenbroucke, M. & Largeau, C. Kerogen origin, evolution and structure. Organic Geochemistry 38, 719–833 (2007). |
Tissot, B. P. & Welte, D. H. Petroleum Formation and Occurrence. Journal of Physics A: Mathematical and Theoretical 44 (Springer Berlin Heidelberg, 1984). |
Cornell, R. M. & Schwertmann, U. The Iron Oxides Structure, Properties, Reactions, Occurences and Uses (2003). |
de Faria, D. L. A., Venâncio Silva, S. & de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy 28, 873–878 (1997). |
Hanesch, M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International 177, 941–948 (2009). |
Bernard, S. et al. Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks. 262, 257–272 (2007). |
Buick, R. Microfossil Recognition in Archean Rocks: An Appraisal of Spheroids and Filaments from a 3500 M.Y. Old Chert-Barite Unit at North Pole, Western Australia. Palaios 5, 441–459 (1990). |
Benzerara, K., Bernard, S. & Miot, J. Mineralogical Identification of Traces of Life. In Advances in Astrobiology and Biogeophysics 123–144, https://doi.org/10.1007/978-3-319-96175-0_6 (Springer, Cham, 2019). |
Hickman-Lewis, K., Garwood, R. J., Withers, P. J. & Wacey, D. X-ray microtomography as a tool for investigating the petrological context of Precambrian cellular remains. Geological Society, London, Special Publications 448, SP448.11 (2016). |
Holler, M. et al. OMNY PIN - A versatile sample holder for tomographic measurements at room and cryogenic temperatures. Review of Scientific Instruments 88, (2017). |
Holler, M. et al. An instrument for 3D x-ray nano-imaging. Review of Scientific Instruments 83, 073703 (2012). |
Huang, X. et al. Optimization of overlap uniformness for ptychography. Optics Express, https://doi.org/10.1364/OE.22.012634 (2014). |
Thibault, P., Dierolf, M., Bunk, O., Menzel, A. & Pfeiffer, F. Probe retrieval in ptychographic coherent diffractive imaging. Ultramicroscopy 109, 338–343 (2009). |
Thibault, P. & Guizar-Sicairos, M. Maximum-likelihood refinement for coherent diffractive imaging. New Journal of Physics 14, 063004 (2012). |
Guizar-Sicairos, M. et al. Phase tomography from x-ray coherent diffractive imaging projections. Optics Express 19, 21345 (2011). |
Guizar-Sicairos, M. et al. Quantitative interior x-ray nanotomography by a hybrid imaging technique. Optica 2, 259 (2015). |
van Heel, M. & Schatz, M. Fourier shell correlation threshold criteria. Journal of Structural Biology 151, 250–262 (2005). |
Ungerer, P., Collell, J. & Yiannourakou, M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity. Energy and Fuels 29, 91–105 (2015). |
Harrison, R. J. & Feinberg, J. M. FORCinel: An improved algorithm for calculating first-order reversal curve distributions using locally weighted regression smoothing. Geochemistry, Geophysics, Geosystems 9, (2008). |