Exportar registro bibliográfico


Metrics:

The properties and genesis environments of South Atlantic cyclones (2019)

  • Authors:
  • USP affiliated authors: CAMARGO, RICARDO DE - IAG ; GRAMCIANINOV, CAROLINA BARNEZ - IAG
  • Unidade: IAG
  • DOI: 10.1007/s00382-019-04778-1
  • Subjects: METEOROLOGIA AMBIENTAL; CLIMATOLOGIA; CICLONES
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s00382-019-04778-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GRAMCIANINOV, C. B; HODGES, K. I; CAMARGO, Ricardo de. The properties and genesis environments of South Atlantic cyclones. Climate Dynamics, Berlin, Springer, v. 53, n. 7-8, p. 4115-4140, 2019. Disponível em: < https://doi.org/10.1007/s00382-019-04778-1 > DOI: 10.1007/s00382-019-04778-1.
    • APA

      Gramcianinov, C. B., Hodges, K. I., & Camargo, R. de. (2019). The properties and genesis environments of South Atlantic cyclones. Climate Dynamics, 53( 7-8), 4115-4140. doi:10.1007/s00382-019-04778-1
    • NLM

      Gramcianinov CB, Hodges KI, Camargo R de. The properties and genesis environments of South Atlantic cyclones [Internet]. Climate Dynamics. 2019 ; 53( 7-8): 4115-4140.Available from: https://doi.org/10.1007/s00382-019-04778-1
    • Vancouver

      Gramcianinov CB, Hodges KI, Camargo R de. The properties and genesis environments of South Atlantic cyclones [Internet]. Climate Dynamics. 2019 ; 53( 7-8): 4115-4140.Available from: https://doi.org/10.1007/s00382-019-04778-1

    Referências citadas na obra
    Bengtsson L, Hodges KI, Easch M, Keenlyside N, Kornblueh L, Luo JJ, Yamagata T (2007) How may tropical cyclones change in a warmer climate? Tellus 59A:539–561. https://doi.org/10.1111/j.1600-0870.2007.00251.x
    Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22(9):2276–2301. https://doi.org/10.1175/2008JCLI2678.1
    Berbery EH, Vera CS (1996) Characteristics of the southern hemisphere winter storm track with filtered and unfiltered data. J Atmos Sci 53(3):468–481
    Bjerknes J, Solberg H (1922) Life cycle of cyclones and the polar front theory of atmospheric circulation. Geofys Publ 3:1–18
    Bluestein H (1992) Synoptic-dynamic meteorology in midlatitudes: principles of kinematics and dynamics, vol 1. Oxford University Press, Oxford
    Bolton D (1980) The computation of equivalent potential temperature. Mon Weather Rev 108:1046–1053
    Browning KA, Roberts NM (1994) Structure of a frontal cyclone. Q J R Meteorol Soc 120(520):1535–1557. https://doi.org/10.1002/qj.49712052006
    Browning KA, Roberts NM, Illingworth AJ (1997) Mesoscale analysis of the activation of a cold front during cyclogenesis. Q J R Meteorol Soc 123(544):2349–2374. https://doi.org/10.1002/qj.49712354410
    Campos EJD, Lentini CAD, Miller JL, Piola AR (1999) Interannual variability of the sea surface temperature in the South Brazil Bight. Geophys Res Lett 26(14):2061–2064. https://doi.org/10.1029/1999GL900297
    Catto JL, Shaffrey LC, Hodges KI (2010) Can climate models capture the structure of extratropical cyclones? J Clim 23(7):1621–1635. https://doi.org/10.1175/2009JCLI3318.1
    da Rocha RP, Sugahara S, da Silveira RB (2004) Sea waves generated by extratropical cyclones in the South Atlantic Ocean: hindcast and validation against altimeter data. Weather Forecast 19(2):398–410. https://doi.org/10.1175/1520-0434(2004)019<0398:SWGBEC>2.0.CO;2
    Dacre HF, Gray SL (2006) Life-cycle simulations of shallow frontal waves and the impact of deformation strain. Q J R Meteorol Soc 132(620):2171–2190. https://doi.org/10.1256/qj.05.238
    Dacre HF, Gray SL (2009) The spatial distribution and evolution characteristics of North Atlantic cyclones. Mon Weather Rev 137:99–115
    Dacre HF, Hawcroft MK, Stringer MA, Hodges KI (2012) An extratropical cyclone atlas: a tool for illustrating cyclone structure and evolution characteristics. Bull Am Meteorol Soc 93(10):1497–1502. https://doi.org/10.1175/BAMS-D-11-00164.1
    Dias Pinto JR, Da Rocha RP (2011) The energy cycle and structural evolution of cyclones over southeastern South America in three case studies. J Geophys Res Atmos 116(14):1–17. https://doi.org/10.1029/2011JD016217
    Dias Pinto JR, Reboita MS, Da Rocha RP (2013) Synoptic and dynamical analysis of subtropical cyclone Anita (2010) and its potential for tropical transition over the South Atlantic Ocean. J Geophys Res Atmos 118(19):10,870–10,883. https://doi.org/10.1002/jgrd.50830
    Drumond A, Nieto R, Gimeno L, Ambrizzi T (2008) A Lagrangian identification of major sources of moisture over Central Brazil and La Plata Basin. J Geophys Res Atmos. https://doi.org/10.1029/2007JD009547
    Dutra LMM, da Rocha RP, Lee RW, Peres JRR, de Camargo R (2017) Structure and evolution of subtropical cyclone Anita as evaluated by heat and vorticity budgets. Q J R Meteorol Soc 143(704):1539–1553. https://doi.org/10.1002/qj.3024
    Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale eta model. J Geophys Res Atmos 108(D22):8851. https://doi.org/10.1029/2002JD003296
    Funatsu BM, Gan MA, Caetano E (2004) A case study of orographic cyclogenesis over South America. Atmosfera 17(2):91–113
    Gan MA, Rao VB (1991) Surface cyclogenesis over South America. Mon Weather Rev 119:1293–1302
    Gan MA, Rao VB (1994) The influence of the Andes Cordillera on transient disturbances. Mon Weather Rev 122:1141–1157. https://doi.org/10.1175/1520-0493(1994)122<1141:TIOTAC>2.0.CO;2
    Geng Q, Sugi M (2003) Possible change of extratropical cyclone activity due to enhanced greenhouse gases and sulfate aerosols—study with a high-resolution AGCM. J Clim 16(13):2262–2274. https://doi.org/10.1175/1520-0442(2003)16<2262:PCOECA>2.0.CO;2
    Gordon AL (1989) Brazil–Malvinas confluence—1984. Deep Sea Res Part A Oceanogr Res Pap 36(3):359–384. https://doi.org/10.1016/0198-0149(89)90042-3
    Gozzo LF, da Rocha RP (2013) Air-sea interaction processes influencing the development of a Shapiro–Keyser type cyclone over the Subtropical South Atlantic Ocean. Pure Appl Geophys 170(5):917–934. https://doi.org/10.1007/s00024-012-0584-3
    Gozzo LF, da Rocha RP, Reboita MS, Sugahara S (2014) Subtropical cyclones over the southwestern South Atlantic: climatological aspects and case study. J Clim 27(22):8543–8562. https://doi.org/10.1175/JCLI-D-14-00149.1
    Griffies S, Harrison MJ, Pacanowski RC, Rosati A (2004) A technical guide to MOM4. GFDL Ocean Group. Technical report 5, NOAA/Geophysical Fluid Dynamics Laboratory, version prepared on August 23, 2004
    Grise KM, Son SW, Gyakum JR (2013) Intraseasonal and interannual variability in North American storm tracks and its relationship to Equatorial Pacific variability. Mon Weather Rev 141(10):3610–3625. https://doi.org/10.1175/MWR-D-12-00322.1
    Hodges KI (1994) A general-method for tracking analysis and its application to meteorological data. Mon Weather Rev 122(11):2573–2586. https://doi.org/10.1175/1520-0493(1994)122<2573:AGMFTA>2.0.CO;2
    Hodges KI (1995) Feature tracking on the unit sphere. Mon Weather Rev 123(12):3458–3465. https://doi.org/10.1175/1520-0493(1995)123<3458:FTOTUS>2.0.CO;2
    Hodges KI (1996) Spherical nonparametric estimators applied to the UGAMP model integration for AMIP. Mon Weather Rev 124(12):2914–2932. https://doi.org/10.1175/1520-0493(1996)124<2914:SNEATT>2.0.CO;2
    Hodges KI (1999) Adaptative constraints for feature tracking. Mon Weather Rev 127:1362–1373. https://doi.org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2
    Hodges KI, Lee RW, Bengtsson L (2011) A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J Clim 24:4888–4906. https://doi.org/10.1175/2011JCLI4097.1
    Hoskins BJ, Hodges KI (2002) New perspectives on the northern hemisphere winter storm tracks. J Atmos Sci 59:1041–1061. https://doi.org/10.1175/1520-0469(2002)059<1041:NPOTNH>2.0.CO;2
    Hoskins A, Hodges KI (2005) A new perspective on the southern hemisphere storm tracks. J Clim 18:4108–4129
    Inatsu M, Hoskins BJ (2004) The zonal asymmetry of the southern hemisphere winter storm track. J Clim 17(24):4882–4892. https://doi.org/10.1175/JCLI-3232.1
    Innocentini V, Neto EDSC (1996) A case study of the 9 august 1988 South Atlantic storm: numerical simulations of the wave activity. Weather Forecast 11(1):78–88. https://doi.org/10.1175/1520-0434(1996)011<0078:ACSOTA>2.0.CO;2
    Iwabe CMN, da Rocha RP (2009) An event of stratospheric air intrusion and its associated secondary surface cyclogenesis over the South Atlantic Ocean. J Geophys Res Atmos 114(D9):d09101. https://doi.org/10.1029/2008JD011119
    Iwabe CMN, Reboita MS, de Camargo R (2011) Estudo de caso de uma situação atmosférica entre 12 e 19 de setembro de 2008 com algumas características semelhantes ao evento catarina. Rev Bras Meteorol 26:67–84
    Jones DA, Simmonds I (1993) A climatology of southern hemisphere extratropical cyclones. Clim Dyn 9(3):131145. https://doi.org/10.1007/BF00209750
    Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEPDOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1644. https://doi.org/10.1175/BAMS-83-11-1631
    Krüger LF, da Rocha RP, Reboita MS, Ambrizzi T (2012) RegCM3 nested in HadAM3 scenarios A2 and B2: projected changes in extratropical cyclogenesis, temperature and precipitation over the South Atlantic Ocean. Clim Change 113(3–4):599–621. https://doi.org/10.1007/s10584-011-0374-4
    Marengo JA, Soares WR, Saulo C, Nicolini M (2004) Climatology of the low-level jet east of the Andes as derived from the $$\text{ NCEP }-\text{ NCAR }$$ reanalyses: characteristics and temporal variability. J Clim 17(12):2261–2280. https://doi.org/10.1175/1520-0442(2004)017<2261:COTLJE>2.0.CO;2
    Mendes D, Souza EP, Isabel Trigo F, Miranda PMA (2007) On precursors of South American cyclogenesis. Tellus 59A:114–121. https://doi.org/10.1111/j.1600-0870.2006.00215.x
    Mendes D, Souza EP, Marengo J, Mendes MCD (2010) Climatology of extratropical cyclones over the South American-southern oceans sector. Theor Appl Climatol 100(3):239–250. https://doi.org/10.1007/s00704-009-0161-6
    Murray FW (1967) On the computation of saturation vapor pressure. J Appl Meteorol 6(1):203–204. https://doi.org/10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2
    Murray RJ, Simmonds I (1991) A numerical scheme for tracking cyclone centres from digital data. Part II: application to January and July general circulation model simulations. Aust Meteorol Mag 39:167–180
    Olson DB, Podest GP, Evans RH, Brown OB (1988) Temporal variations in the separation of Brazil and Malvinas currents. Deep Sea Res Part A Oceanogr Res Pap 35(12):1971–1990. https://doi.org/10.1016/0198-0149(88)90120-3
    Orlanski I, Katzfey J (1991) The life cycle of a cyclone wave in the southern hemisphere. Part I: eddy energy budget. J Atmos Sci 48(17):1972–1998. https://doi.org/10.1175/1520-0469(1991)048<1972:TLCOAC>2.0.CO;2
    Parise CK, Calliari LJ, Krusche N (2009) Extreme storm surges in the south of Brazil: atmospheric conditions and shore erosion. Braz J Oceanogr 57:175–188. https://doi.org/10.1590/S1679-87592009000300002
    Petterssen S, Smebye SJ (1971) On the development of extratropical cyclones. Q J R Meteorol Soc 97(414):457–482. https://doi.org/10.1002/qj.49709741407
    Piola AR, Campos EJD, Möller OO, Charo M, Martinez C (2000) Subtropical shelf front off eastern South America. J Geophys Res Oceans 105(C3):6565–6578. https://doi.org/10.1029/1999JC000300
    Piva ED, Moscati MCdL, Gan MA (2008) Papel dos fluxos de calor latente e sensível em superfície associado a um caso de ciclogênese na costa leste da América do Sul. Rev Bras Meteorol 23(4):450–476
    Piva ED, Gan MA, Rao VB (2010) Energetics of winter troughs entering South America. Mon Weather Rev 138(4):1084–1103. https://doi.org/10.1175/2009MWR2970.1
    Piva ED, Gan MA, Moscati MCdL (2011) The role of latent and sensible heat fluxes in an explosive cyclogenesis over the South American East Coast. J Meteorol Soc Jpn 89(6):637–663. https://doi.org/10.2151/jmsj.2011-604
    Reboita MS, Ambrizzi T, da Rocha RP (2009) Relationship between the southern annular mode and southern hemisphere atmospheric systems. Rev Bras Meteorol 24:48–55. https://doi.org/10.1590/S0102-77862009000100005
    Reboita MS, da Rocha RP, Ambrizzi T, Sugahara S (2010a) South Atlantic Ocean cyclogenesis climatology simulated by regional climate model (RegCM3). Climate Dyn 35(7–8):1331–1347. https://doi.org/10.1007/s00382-009-0668-7
    Reboita MS, Gan MA, da Rocha RP, Ambrizzi T (2010b) Precipitation regimes in South America: a bibliography review. Rev Bras Meteorol 25:185–204. https://doi.org/10.1590/S0102-77862010000200004
    Reboita MS, da Rocha RP, de Souza MR, Llopart M (2018) Extratropical cyclones over the southwestern South Atlantic Ocean: $$\text{ HadGEM2 }-\text{ ES }$$ and RegCM4 projections. Int J Climatol. https://doi.org/10.1002/joc.5468
    Renfrew IA, Thorpe AJ, Bishop CH (1997) The role of the environmental flow in the development of secondary frontal cyclones. Q J R Meteorol Soc 123(542):1653–1675. https://doi.org/10.1002/qj.49712354210
    Ribeiro BZ, Seluchi ME, Chou SC (2016) Synoptic climatology of warm fronts in Southeastern South America. Int J Climatol 36(2):644–655. https://doi.org/10.1002/joc.4373
    Saha S, Moorthi S, Pan HL, Wu X, Wang J, Nadiga S, Tripp P, Kistler R, Woollen J, Behringer D, Liu H, Stokes D, Grumbine R, Gayno G, Wang J, Hou YT, Chuang H, Juang HMH, Sela J, Iredell M, Treadon R, Kleist D, Delst PV, Keyser D, Derber J, Ek M, Meng J, Wei H, Yang R, Lord S, Dool H, Kumar A, Wang W, Long C, Chelliah M, Xue Y, Huang B, Schemm JK, Ebisuzaki W, Lin R, Xie P, Chen M, Zhou S, Higgins W, Zou CZ, Liu Q, Chen Y, Han Y, Cucurull L, Reynolds RW, Rutledge G, Goldberg M (2010) The ncep climate forecast system reanalysis. Bull Am Meteorol Soc 91(8):1015–1058. https://doi.org/10.1175/2010BAMS3001.1
    Sanders F, Gyakum JR (1980) Synoptic-dynamic climatology of the bomb. Mon Weather Rev 10:1589–1606. https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2
    Satyamurty P, Ferreira CC, Gan MA (1990) Cyclonic vortices over South America. Tellus A 42(1):194–201
    Saulo AC, Seluchi ME, Nicolini M (2004) A case study of a chaco low-level jet event. Mon Weather Rev 132(11):2669–2683. https://doi.org/10.1175/MWR2815.1
    Schneider T, Gorman PAO, Levine XJ (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48(RG3001):1–22. https://doi.org/10.1029/2009RG000302
    Seluchi ME, Saulo AC (1998) Possible mechanisms yielding an explosive coastal cyclogenesis over South America: experiments using a limited area model. Aust Meteorol Mag 47:309–320
    Seluchi ME, Saulo AC (2012) Baixa do Noroeste Argentino e Baixa do Chaco: caracterísitcas, diferenças e semelhanças. Rev Bras Meteorol 27(1):49–60
    Seluchi ME, Saulo AC, Nicolini M, Satyamurty P (2003) The northwestern argentinean low: A study of two typical events. Mon Weather Rev 131(10):2361–2378. https://doi.org/10.1175/1520-0493(2003)131<2361:TNALAS>2.0.CO;2
    Shapiro MA, Keyser D (1990) Fronts, jet streams and the tropopause. In: Newton CW, Holopainen EO (eds) Extratropical cyclones, the Erik Palmen memorial volume. American Meteorological Society, Massachusetts, pp 167–191
    Simmonds I, Keay K (2000) Mean southern hemisphere extratropical cyclone behavior in the 40-year NCEP-NCAR reanalysis. J Clim 13(5):873–885. https://doi.org/10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2
    Sinclair MR (1994) An objective cyclone climatology for the Southern Hemisphere. Mon Weather Rev 122(10):2239–2256. https://doi.org/10.1175/1520-0493(1994)122<2239:AOCCFT>2.0.CO;2
    Sinclair MR (1995) A climatology of cyclogenesis for the southern hemisphere. Mon Weather Rev 123:1601–1619
    Sinclair MR (1997) Objective identification of cyclones and their circulation intensity, and climatology. Weather Forecast 12(3):595–612. https://doi.org/10.1175/1520-0434(1997)012<0595:OIOCAT>2.0.CO;2
    Stopa JE, Cheung KF (2014) Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis. Ocean Model 75:65–83. https://doi.org/10.1016/j.ocemod.2013.12.006
    Streten NA, Troup AJ (1973) A synoptic climatology of satellite observed cloud vortices over the southern hemisphere. Q J R Meteorol Soc 99(419):56–72. https://doi.org/10.1002/qj.49709941906
    Sun X, Cook KH, Vizy EK (2017) The South Atlantic subtropical high: climatology and interannual variability. J Clim 30(9):3279–3296. https://doi.org/10.1175/JCLI-D-16-0705.1
    Taljaard JJ (1967) Development, distribution and movement of cyclones and anticyclones in the Southern Hemisphere during the IGY. J Appl Meteorol 6(6):973–987. https://doi.org/10.1175/1520-0450(1967)006<0973:DDAMOC>2.0.CO;2
    Trenberth KE (1991) Storm tracks in the southern hemisphere. J Atmos Sci 48(19):2159–2178
    Vera CS, Vigliarolo PK, Berbery EH (2002) Cold season synoptic-scale waves over subtropical South America. Mon Weather Rev 130(3):684–699. https://doi.org/10.1175/1520-0493(2002)130<0684:CSSSWO>2.0.CO;2
    Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, Nogues-Paegle J, Dias PLS, Zhang C (2006) Toward a unified view of the American monsoon systems. J Clim 19(20):4977–5000. https://doi.org/10.1175/JCLI3896.1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020