Exportar registro bibliográfico


Metrics:

Miltefosine treatment reduces visceral hypersensitivity in a rat model for irritable bowel syndrome via multiple mechanisms (2019)

  • Authors:
  • USP affiliated author: SAIA, RAFAEL SIMONE - FMRP
  • School: FMRP
  • DOI: 10.1038/s41598-019-49096-y
  • Subjects: SÍNDROME DO INTESTINO IRRITÁVEL; ANTIPARASITÁRIOS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.1038/s41598-019-49096-y (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BOTSCHUIJVER, Sara et al. Miltefosine treatment reduces visceral hypersensitivity in a rat model for irritable bowel syndrome via multiple mechanisms. Scientific Reports, v. 9, 2019Tradução . . Disponível em: https://doi.org/10.1038/s41598-019-49096-y. Acesso em: 09 ago. 2022.
    • APA

      Botschuijver, S., van Diest, S. A., van Thiel, I. A. M., Saia, R. S., Strik, A. S., Yu, Z., et al. (2019). Miltefosine treatment reduces visceral hypersensitivity in a rat model for irritable bowel syndrome via multiple mechanisms. Scientific Reports, 9. doi:10.1038/s41598-019-49096-y
    • NLM

      Botschuijver S, van Diest SA, van Thiel IAM, Saia RS, Strik AS, Yu Z, Maria-Ferreira D, Welting O, Keszthelyi D, Jennings G, Heinsbroek SEM, Elferink RP, Schuren FHJ, Jonge WJ de, Wijngaard RM van den. Miltefosine treatment reduces visceral hypersensitivity in a rat model for irritable bowel syndrome via multiple mechanisms [Internet]. Scientific Reports. 2019 ; 9[citado 2022 ago. 09 ] Available from: https://doi.org/10.1038/s41598-019-49096-y
    • Vancouver

      Botschuijver S, van Diest SA, van Thiel IAM, Saia RS, Strik AS, Yu Z, Maria-Ferreira D, Welting O, Keszthelyi D, Jennings G, Heinsbroek SEM, Elferink RP, Schuren FHJ, Jonge WJ de, Wijngaard RM van den. Miltefosine treatment reduces visceral hypersensitivity in a rat model for irritable bowel syndrome via multiple mechanisms [Internet]. Scientific Reports. 2019 ; 9[citado 2022 ago. 09 ] Available from: https://doi.org/10.1038/s41598-019-49096-y

    Referências citadas na obra
    Drossman, D. A. et al. International Survey of Patients With IBS Symptom Features and Their Severity, Health Status, Treatments, and Risk Taking to Achieve Clinical Benefit. Journal of clinical gastroenterology 43, 541–550, https://doi.org/10.1097/MCG.0b013e318189a7f9 (2009).
    Morgan, B. Drug development: A healthy pipeline. Nature 533, S116–117, https://doi.org/10.1038/533S116a (2016).
    Keszthelyi, D., Troost, F. J. & Masclee, A. A. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. Methods to assess visceral hypersensitivity in irritable bowel syndrome. American journal of physiology. Gastrointestinal and liver physiology 303, G141–154, https://doi.org/10.1152/ajpgi.00060.2012 (2012).
    Botschuijver, S. et al. Intestinal Fungal Dysbiosis Is Associated With Visceral Hypersensitivity in Patients With Irritable Bowel Syndrome and Rats. Gastroenterology 153, 1026–1039, https://doi.org/10.1053/j.gastro.2017.06.004 (2017).
    Stanisor, O. I. et al. Stress-induced visceral hypersensitivity in maternally separated rats can be reversed by peripherally restricted histamine-1-receptor antagonists. PloS one 8, e66884, https://doi.org/10.1371/journal.pone.0066884 (2013).
    van den Wijngaard, R. M. et al. Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society 21, 1107–e1194, https://doi.org/10.1111/j.1365-2982.2009.01339.x (2009).
    Barbara, G. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126, 693–702, https://doi.org/10.1053/j.gastro.2003.11.055 (2004).
    Barbara, G. et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132, 26–37, https://doi.org/10.1053/j.gastro.2006.11.039 (2007).
    Klooker, T. K. et al. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut 59, 1213–1221, https://doi.org/10.1136/gut.2010.213108 (2010).
    Wouters, M. M. et al. Histamine Receptor H1-Mediated Sensitization of TRPV1 Mediates Visceral Hypersensitivity and Symptoms in Patients With Irritable Bowel Syndrome. Gastroenterology 150, 875–887 e879, https://doi.org/10.1053/j.gastro.2015.12.034 (2016).
    Bastos, L. F. & Coelho, M. M. Drug repositioning: playing dirty to kill pain. CNS drugs 28, 45–61, https://doi.org/10.1007/s40263-013-0128-0 (2014).
    Dorlo, T. P., Balasegaram, M., Beijnen, J. H. & de Vries, P. J. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67, 2576–2597, https://doi.org/10.1093/jac/dks275 (2012).
    van Blitterswijk, W. J. & Verheij, M. Anticancer mechanisms and clinical application of alkylphospholipids. Biochim Biophys Acta 1831, 663–674, https://doi.org/10.1016/j.bbalip.2012.10.008 (2013).
    Biswas, C. et al. Functional disruption of yeast metacaspase, Mca1, leads to miltefosine resistance and inability to mediate miltefosine-induced apoptotic effects. Fungal genetics and biology: FG & B 67, 71–81, https://doi.org/10.1016/j.fgb.2014.04.003 (2014).
    Widmer, F. et al. Hexadecylphosphocholine (miltefosine) has broad-spectrum fungicidal activity and is efficacious in a mouse model of cryptococcosis. Antimicrob Agents Chemother 50, 414–421, https://doi.org/10.1128/AAC.50.2.414-421.2006 (2006).
    Magerl, M. et al. Randomized, double-blind, placebo-controlled study of safety and efficacy of miltefosine in antihistamine-resistant chronic spontaneous urticaria. Journal of the European Academy of Dermatology and Venereology: JEADV 27, e363–369, https://doi.org/10.1111/j.1468-3083.2012.04689.x (2013).
    Maurer, M., Magerl, M., Metz, M., Weller, K. & Siebenhaar, F. Miltefosine: a novel treatment option for mast cell-mediated diseases. The Journal of dermatological treatment 24, 244–249, https://doi.org/10.3109/09546634.2012.671909 (2013).
    Rubikova, Z., Sulimenko, V., Paulenda, T. & Draber, P. Mast Cell Activation and Microtubule Organization Are Modulated by Miltefosine Through Protein Kinase C Inhibition. Frontiers in immunology 9, 1563, https://doi.org/10.3389/fimmu.2018.01563 (2018).
    Weller, K. et al. Miltefosine Inhibits Human Mast Cell Activation and Mediator Release Both In Vitro and In Vivo. Journal of Investigative Dermatology 129, 496–498, https://doi.org/10.1038/jid.2008.248 (2009).
    Heczkova, B. & Slotte, J. P. Effect of anti-tumor ether lipids on ordered domains in model membranes. FEBS letters 580, 2471–2476, https://doi.org/10.1016/j.febslet.2006.03.079 (2006).
    Varshney, P., Yadav, V. & Saini, N. Lipid rafts in immune signalling: current progress and future perspective. Immunology 149, 13–24, https://doi.org/10.1111/imm.12617 (2016).
    Saghy, E. et al. Evidence for the role of lipid rafts and sphingomyelin in Ca2+-gating of Transient Receptor Potential channels in trigeminal sensory neurons and peripheral nerve terminals. Pharmacological research 100, 101–116, https://doi.org/10.1016/j.phrs.2015.07.028 (2015).
    Llull, D., Rivas, L. & Garcia, E. In vitro bactericidal activity of the antiprotozoal drug miltefosine against Streptococcus pneumoniae and other pathogenic streptococci. Antimicrob Agents Chemother 51, 1844–1848, https://doi.org/10.1128/AAC.01428-06 (2007).
    van den Wijngaard, R. M. et al. Possible role for TRPV1 in neomycin-induced inhibition of visceral hypersensitivity in rat. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society 21, 863–e860, https://doi.org/10.1111/j.1365-2982.2009.01287.x (2009).
    Welting, O., Van Den Wijngaard, R. M., De Jonge, W. J., Holman, R. & Boeckxstaens, G. E. Assessment of visceral sensitivity using radio telemetry in a rat model of maternal separation. Neurogastroenterol. Motil. 17, 838–845, https://doi.org/10.1111/j.1365-2982.2005.00677.x (2005).
    Szoke, E. et al. Effect of lipid raft disruption on TRPV1 receptor activation of trigeminal sensory neurons and transfected cell line. European journal of pharmacology 628, 67–74, https://doi.org/10.1016/j.ejphar.2009.11.052 (2010).
    Rami, H. K. et al. Discovery of SB-705498: a potent, selective and orally bioavailable TRPV1 antagonist suitable for clinical development. Bioorganic & medicinal chemistry letters 16, 3287–3291, https://doi.org/10.1016/j.bmcl.2006.03.030 (2006).
    Menez, C., Buyse, M., Dugave, C., Farinotti, R. & Barratt, G. Intestinal absorption of miltefosine: contribution of passive paracellular transport. Pharmaceutical research 24, 546–554, https://doi.org/10.1007/s11095-006-9170-7 (2007).
    Morcia, C., Malnati, M. & Terzi, V. In vitro antifungal activity of terpinen-4-ol, eugenol, carvone, 1,8-cineole (eucalyptol) and thymol against mycotoxigenic plant pathogens. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment 29, 415–422, https://doi.org/10.1080/19440049.2011.643458 (2012).
    Sokovic, M. D. et al. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules (Basel, Switzerland) 14, 238–249, https://doi.org/10.3390/molecules14010238 (2009).
    Botschuijver, S. et al. Reversal of visceral hypersensitivity in rat by Menthacarin((R)), a proprietary combination of essential oils from peppermint and caraway, coincides with mycobiome modulation. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society 30, e13299, https://doi.org/10.1111/nmo.13299 (2018).
    Sam, Q. H., Chang, M. W. & Chai, L. Y. The Fungal Mycobiome and Its Interaction with Gut Bacteria in the Host. International journal of molecular sciences 18, https://doi.org/10.3390/ijms18020330 (2017).
    Dart, C. Lipid microdomains and the regulation of ion channel function. The Journal of physiology 588, 3169–3178, https://doi.org/10.1113/jphysiol.2010.191585 (2010).
    Sezgin, E., Levental, I., Mayor, S. & Eggeling, C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nature reviews. Molecular cell biology 18, 361–374, https://doi.org/10.1038/nrm.2017.16 (2017).
    Robbins, N., Caplan, T. & Cowen, L. E. Molecular Evolution of Antifungal Drug Resistance. Annual review of microbiology 71, 753–775, https://doi.org/10.1146/annurev-micro-030117-020345 (2017).
    Frantz, S. Drug discovery: playing dirty. Nature 437, 942–943, https://doi.org/10.1038/437942a (2005).
    Christianson, J. A. & Gebhart, G. F. Assessment of colon sensitivity by luminal distension in mice. Nature protocols 2, 2624–2631, https://doi.org/10.1038/nprot.2007.392 (2007).
    Park, S. H. et al. Adverse childhood experiences are associated with irritable bowel syndrome and gastrointestinal symptom severity. Neurogastroenterology and motility: the official journal of the European Gastrointestinal Motility Society 28, 1252–1260, https://doi.org/10.1111/nmo.12826 (2016).
    Posserud, I. et al. Altered visceral perceptual and neuroendocrine response in patients with irritable bowel syndrome during mental stress. Gut 53, 1102–1108, https://doi.org/10.1136/gut.2003.017962 (2004).
    Bokulich, N. A. & Mills, D. A. Improved selection of internal transcribed spacer-specific primers enables quantitative, ultra-high-throughput profiling of fungal communities. Applied and environmental microbiology 79, 2519–2526, https://doi.org/10.1128/AEM.03870-12 (2013).
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and environmental microbiology 75, 7537–7541, https://doi.org/10.1128/AEM.01541-09 (2009).
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and environmental microbiology 73, 5261–5267, https://doi.org/10.1128/AEM.00062-07 (2007).
    Abarenkov, K. et al. The UNITE database for molecular identification of fungi–recent updates and future perspectives. The New phytologist 186, 281–285, https://doi.org/10.1111/j.1469-8137.2009.03160.x (2010).
    Kong, Y. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98, 152–153, https://doi.org/10.1016/j.ygeno.2011.05.009 (2011).
    Wingren, U. & Enerback, L. Mucosal mast cells of the rat intestine: a re-evaluation of fixation and staining properties, with special reference to protein blocking and solubility of the granular glycosaminoglycan. The Histochemical journal 15, 571–582, https://doi.org/10.1007/BF01954148 (1983).
    Lam, P. M. et al. Activation of recombinant human TRPV1 receptors expressed in SH-SY5Y human neuroblastoma cells increases [Ca(2+)](i), initiates neurotransmitter release and promotes delayed cell death. Journal of neurochemistry 102, 801–811, https://doi.org/10.1111/j.1471-4159.2007.04569.x (2007).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022