A bayesian analysis of the matching problem (2019)
- Authors:
- Autor USP: ANDRADE FILHO, MÁRIO DE CASTRO - ICMC
- Unidade: ICMC
- Subjects: INFERÊNCIA BAYESIANA; DISTRIBUIÇÕES (PROBABILIDADE); ESTATÍSTICA
- Keywords: matching problem; nominal data; sample size determination; Bayesian analysis
- Language: Inglês
- Imprenta:
- Source:
- Título: Libro de resúmenes
- Conference titles: Congreso Bayesiano de America Latina
-
ABNT
VIDAL, Ignacio e CASTRO, Mário de. A bayesian analysis of the matching problem. 2019, Anais.. Lima: PUCP, 2019. Disponível em: https://www.dropbox.com/s/99p8o4a93tcbktk/VICOBAL2019.pdf?dl=0. Acesso em: 11 jan. 2026. -
APA
Vidal, I., & Castro, M. de. (2019). A bayesian analysis of the matching problem. In Libro de resúmenes. Lima: PUCP. Recuperado de https://www.dropbox.com/s/99p8o4a93tcbktk/VICOBAL2019.pdf?dl=0 -
NLM
Vidal I, Castro M de. A bayesian analysis of the matching problem [Internet]. Libro de resúmenes. 2019 ;[citado 2026 jan. 11 ] Available from: https://www.dropbox.com/s/99p8o4a93tcbktk/VICOBAL2019.pdf?dl=0 -
Vancouver
Vidal I, Castro M de. A bayesian analysis of the matching problem [Internet]. Libro de resúmenes. 2019 ;[citado 2026 jan. 11 ] Available from: https://www.dropbox.com/s/99p8o4a93tcbktk/VICOBAL2019.pdf?dl=0 - Does reference prior alleviate the incidental parameter problem?
- Defining the optimal approach to the patient with postradiation prostate-specific antigen recurrence using outcome data from a prospective randomized trial
- The beta generalized gamma distribution
- Frailty models power variance function with cure fraction and latent risk factors negative binomial
- Maximum penalized likelihood inference in classical errors-in-variables model
- New estimation methods for the Grubbs model
- Robust inference in an heteroscedastic measurement error model
- Bayesian transformation models for multivariate survival data
- Partially linear beta regression model with autoregressive errors
- Singularity points and vanishing tetrads in factor analysis
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
