Exportar registro bibliográfico


Metrics:

Drug design of new 5-HT6 antagonists: a QSAR study of arylsulfonamide derivatives (2020)

  • Authors:
  • USP affiliated authors: HONORIO, KÁTHIA MARIA - EACH ; SILVA, ALBÉRICO BORGES FERREIRA DA - IQSC ; SILVA, ALDINEIA PEREIRA DA - IQSC ; ANGELO, RAFAELA MOLINA DE - EACH
  • Unidades: EACH; IQSC
  • DOI: 10.1007/s11224-020-01513-z
  • Assunto: QUÍMICA MÉDICA
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s11224-020-01513-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Aldineia Pereira da; ANGELO, Rafaela Machado de; PAULA, Heberth De; HONÓRIO, Káthia Maria; SILVA, Alberico Borges Ferreira da. Drug design of new 5-HT6 antagonists: a QSAR study of arylsulfonamide derivatives. Structural Chemistry: computational and experimental studies of chemical and biological systems, New York, v. 31, p. 1585–1597, 2020. Disponível em: < https://link.springer.com/article/10.1007/s11224-020-01513-z > DOI: 10.1007/s11224-020-01513-z.
    • APA

      Silva, A. P. da, Angelo, R. M. de, Paula, H. D., Honório, K. M., & Silva, A. B. F. da. (2020). Drug design of new 5-HT6 antagonists: a QSAR study of arylsulfonamide derivatives. Structural Chemistry: computational and experimental studies of chemical and biological systems, 31, 1585–1597. doi:10.1007/s11224-020-01513-z
    • NLM

      Silva AP da, Angelo RM de, Paula HD, Honório KM, Silva ABF da. Drug design of new 5-HT6 antagonists: a QSAR study of arylsulfonamide derivatives [Internet]. Structural Chemistry: computational and experimental studies of chemical and biological systems. 2020 ; 31 1585–1597.Available from: https://link.springer.com/article/10.1007/s11224-020-01513-z
    • Vancouver

      Silva AP da, Angelo RM de, Paula HD, Honório KM, Silva ABF da. Drug design of new 5-HT6 antagonists: a QSAR study of arylsulfonamide derivatives [Internet]. Structural Chemistry: computational and experimental studies of chemical and biological systems. 2020 ; 31 1585–1597.Available from: https://link.springer.com/article/10.1007/s11224-020-01513-z

    Referências citadas na obra
    Alzheimer's & Dementia (2017) Alzheimer’s disease facts and figures. Alzheimers Dement 13:325–373. https://doi.org/10.1016/j.jalz.2017.02.001
    Alzheimer’s Disease International. A new landmark for people with dementia. http://www.alz.co.uk/media/160825 (Acessed May 15, 2019).
    Sayeg N How many people suffer from Alzheimer’s disease worlwide and Brazil? AlzheimerMed-Informação & Solidariedade. http://www.alzheimermed.com.br/ (Acessed Jun 10, 2019).
    The human memory- neurons & synapses. http://www.human-memory.net/brain_neurons.html (Acessed Jun 11, 2019).
    Benhamú B, Fontecha MM, Villa HV, Pardo L, Rodriguez MLL (2014) Serotonin 5-HT6 receptor antagonists for the treatment of cognitive deficiency in Alzheimer’s disease. J Med Chem 57:7160–7181. https://doi.org/10.1021/jm5003952
    Upton N, Chuang TT, Hunter AJ, Virley DJ (2008) 5-HT6 antagonist as novel cognitive enhancing agent for Alzheimer’s disease. Neurotherapeutics 5:458–459. https://doi.org/10.1016/j.nurt.2008.05.008
    Karila D, Freret T, Bouet V, Boulouard M, Dallemagne P, Rochais C (2015) Therapeutic potential of 5-HT6 receptor agonists. J Med Chem 58:7901–7912. https://doi.org/10.1021/acs.jmedchem.5b00179
    Karsten W, Andreas H, Anton B (2015) Investigational drugs targeting 5-HT6 receptors for the treatment of Alzheimer's disease. Expert Opin Investig Drugs 24:1515–1528. https://doi.org/10.1517/13543784.2015.1102884
    Meneses A (2001) Role of 5-HT6 receptors in memory formation. Drug News Perspect 14:396–400. https://doi.org/10.1517/13543784.2015.1102884
    Riemer C, Borroni E, Levet-Trafit B, Martin JR, Poli S, Porter RHP, Bös M (2003) Influence of the 5-HT6 receptor on acetylcholine release in the cortex: pharmacological characterization of 4-(2-bromo-6- pyrrolidin-1-ylpyridine-4-sulfonyl) phenylamine, a potent and selective 5-HT6 receptor antagonist. J Med Chem 46:1273–1276. https://doi.org/10.1021/jm021085c
    Wolley ML, Marsden CA, Sleight AJ, Fone KCF (2003) Reversal of a cholinergic-induced deficit in a rodent model of recognition memory by the selective 5-HT6 receptor antagonist, Ro 04–6790. Psychopharmacology 170:358–367. https://doi.org/10.1007/s00213-003-1552-5
    Hirst WD, Abrahamsen B, Blaney FE, Calver AR, Aloj L, Price GW, Medhurst AD (2003) Differences in the central nervous system distribution and pharmacology of the mouse 5-hydroxytryptamine-6 receptor compared with rat and human receptors investigated by radioligand binding, site-directed mutagenesis, and molecular modeling. Mol Pharmacol 64:1295–1308. https://doi.org/10.1124/mol.64.6.1295
    Hirst WD, Stean TO, Rogers DC, Sunter D, Pugh P, Moss SF, Bromidge SM, Riley G, Smith DR, Bartlett S, Heidbreder CA, Atkins AR, Lacroix LP, Dawson LA, Foley AG, Regan CM, Upton N (2006) SB-399885 is a potent, selective 5-HT6 receptor antagonist with cognitive enhancing properties in aged rat water maze and novel object recognition models. Eur J Pharmacol 553:109–119. https://doi.org/10.1016/j.ejphar.2006.09.049
    López-Rodríguez ML, Benhamú B, de la Fuente T, Sanz A, Pardo L, Campilo MA (2005) Three-dimensional pharmacophore model for 5-hydroxytryptamine6 (5-HT6) receptor antagonists. J Med Chem 48:416–4219. https://doi.org/10.1021/jm050247c
    Sikazwe D, Bondarev ML, Dukat M, Rangisetty JB, Sanz A, Roth BL, Glennon RA (2006) Binding of sulfonyl-containing arylalkylamines at human 5-HT6 serotonin receptor. J Med Chem 49:5217–5225. https://doi.org/10.1021/jm060469q
    Kim HJ, Doddareddy MR, Choo H, Cho YS, No KT, Park WK, Pae AN (2005) New serotonin 5-HT6 ligands from common feature pharmacophore hypotheses. J Med Chem 48:197–206. https://doi.org/10.1021/ci700160t
    De la Fuente T, Martín-Fontecha M, Sallander J, Benhamú B, Campilo L, Medina RA, Pellissier LP, Claeysen S, Dumuis A, Pardo L, López-Rodrigues ML (2010) Benzimidazole derivatives as new serotonin 5-HT6 receptor antagonists. Molecular mechanisms of receptor inactivation. J Med Chem 53:1357–1369. https://doi.org/10.1021/jm901672k
    Schwartz TW, Frimurer TM, Holst B, Rosenkilde MM, Elling CE (2006) Molecular mechanism of 7TM receptor activation - a global toggle switch model. Annu Rev Pharmacol Toxicol 46:481–519. https://doi.org/10.1146/annurev.pharmtox.46.120604.141218
    Mella J, Villegas F, Morales-Verdejo C, Lagos CF, Recabarren-Gajardo G (2017) Structure-activity relationships studies on weakly basic N-arylsulfonylindoles with an antagonistic profile in the 5-HT6 receptor. J Mol Struct 1139:362–370. https://doi.org/10.1016/j.molstruc.2017.03.067
    Doddareddy MR, Cho YS, Koh HY, Pae AN (2004) CoMFA and CoMSIA 3D QSAR analysis on N1-arylsulfoylindole compounds as 5-HT6 antagonists. Bioorg Med Chem 12:3977–3985. https://doi.org/10.1016/j.bmc.2004.06.007
    Hao M, Li Y, Li H, Zhang S (2011) Investigation of the structure requirement for 5-HT6 binding affinity of arylsulfonyl derivatives: a computational study. Int J Mol Sci 12:5011–5030. https://doi.org/10.3390/ijms12085011
    Cole DC, Lennox WJ, Lombardi S, Ellingboe JW, Bernotas RC, Tawa GJ, Mazandarani H, Smith DL, Zhang G, Coupet J, Schechter LE (2005) Discovery of 5-arylsulfonamido-3-(pyrrolidine-2-ylmethy)-1H-indole derivatives as potent. Selective 5-HT6 receptor agonists and antagonists. J Med Chem 48:353–356. https://doi.org/10.1021/jm049243i
    Harder E, Wolfgang D, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2015) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comp 12:281–296. https://doi.org/10.1021/acs.jctc.5b00864
    Schrödinger Release 2017–1. Small-molecule drug discovery suite. Schrödinger. LCC. New York
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich A, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT
    Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) Virtual computational chemistry laboratory - design and description. J Comput Aided Mol Des 19:453–463. https://doi.org/10.1007/s10822-005-8694-y
    De Oliveira DB, Gaudio AC (2000) BuildQSAR: a new computer program for QSAR analysis. Quant Struct -Act Relationships 19:599–601. https://doi.org/10.1002/1521-3838(200012)19:6%3C599::AID-QSAR599%3E3.0.CO;2-B
    Kennard Ronald W, Stone LA (1969) Computer aided design of experiments. Technometrics 11:137–148. https://doi.org/10.2307/1266770
    Martin TM, Harten P, Yong DM, Muratov EN, Golbraikg A, Zhu H, Tropsha A (2012) Does rational selection of training ant test sets improve the outcome of QSAR modeling? J Chem Inf Model 52:2570–2578. https://doi.org/10.1021/ci300338w
    SYBYL. SYBYL 8.2. St. Louis. Missouri
    Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130. https://doi.org/10.1016/S0169-7439(01)00155-1
    Infometrix Inc. Pirouette 3.10 (2001) Woodinville, WA
    Ferreira MMC (2002) Multivariate QSAR. J Braz Chem Soc 13:742–753. https://doi.org/10.1590/S0103-50532002000600004
    Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation ins the absolute essential for successful application and interpretation of QSPR model. QSAR Comb Sci 22:69–77. https://doi.org/10.1002/qsar.200390007
    Kiralj R, Ferreira MMC (2009) Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J Braz Chem Soc 20:770–787. https://doi.org/10.1590/S0103-50532009000400021
    Martins JPA, Ferreira MMC (2013) QSAR modeling: a new open source computational package to generate and validate QSAR models. Quim Nova 36:554–560. https://doi.org/10.1590/S0100-40422013000400013
    Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 20:269–276. https://doi.org/10.1016/S1093-3263(01)00123-1
    Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica EP (2003) Methods for reliability and uncertainty assessment for applicability evaluations of classification and regression-base QSARs. Environ Health Perspect 10:1361–1375. https://doi.org/10.1289/ehp.5758
    Zare-Shahabadi V, Lotfizadeh M, Gandomani ARA, Papari MM (2013) Determination of boiling points of azeotropic mixtures using quantitative structure–property relationship (QSPR) strategy. J Mol Liq 188:222–229. https://doi.org/10.1016/j.molliq.2013.09.037
    Burden FR (1989) Molecular identification number for structure searches. J Chem Inf Comput Sci 29:225–227. https://doi.org/10.1021/ci00063a011
    Todeschini R, Vandycke V (2000) Handbook of molecular descriptor. Wiley-VCH, Weinheim
    Hemmer M, Steinhauer V, Gasteiger J (1999) Deriving the 3D structure of organic molecules from their infrared spectra. Vib Spectrosc 19:151–164. https://doi.org/10.1016/S0924-2031(99)00014-4
    Clare BW (1995) The relationship of charge transfer complexes to frontier orbital energies in QSAR. J Mol Struct 331:63–78. https://doi.org/10.1016/0166-1280(94)03783-H
    Clare BW (1995) Charge transfer complexes and frontier orbital energies in QSAR: a congeneric series of electron acceptors. J Mol Struct 337:139–150. https://doi.org/10.1016/0166-1280(95)04135-S
    Heaton CA, Miller AK, Powell RL (2001) Predicting the reactivity of fluorinated compounds with copper using semi-empirical calculations. J Fluor Chem 107:9–11. https://doi.org/10.1016/S0022-1139(00)00324-9
    Honório KM, Da Silva ABF (2003) An AM1 study on the electron-donating and electron-accepting character of biomolecules. Int J Quantum Chem 95:126–132. https://doi.org/10.1002/qua.10661

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021