Exportar registro bibliográfico


Metrics:

Thermodynamics of hot strong-interaction matter from ultrarelativistic nuclear collisions (2020)

  • Authors:
  • USP affiliated authors: LUZUM, MATTHEW WILLIAM - IF
  • Unidades: IF
  • DOI: 10.1038/s41567-020-0846-4
  • Subjects: FÍSICA NUCLEAR; DINÂMICA DOS FLUÍDOS; TERMODINÂMICA
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: NATURE PHYSICS
    • ISSN: 1745-2481
    • Volume/Número/Paginação/Ano: março, 2020, acesso antecipado
  • Online source accessDOI
    Informações sobre o DOI: 10.1038/s41567-020-0846-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      GARDIM, Fernando G.; GIACALONE, Giuliano; LUZUM, Matthew; OLLITRAULT, Jean-Yves. Thermodynamics of hot strong-interaction matter from ultrarelativistic nuclear collisions. NATURE PHYSICS, Londres, Nature Springer, 2020. Disponível em: < https://doi.org/10.1038/s41567-020-0846-4 > DOI: 10.1038/s41567-020-0846-4.
    • APA

      Gardim, F. G., Giacalone, G., Luzum, M., & Ollitrault, J. -Y. (2020). Thermodynamics of hot strong-interaction matter from ultrarelativistic nuclear collisions. NATURE PHYSICS. doi:10.1038/s41567-020-0846-4
    • NLM

      Gardim FG, Giacalone G, Luzum M, Ollitrault J-Y. Thermodynamics of hot strong-interaction matter from ultrarelativistic nuclear collisions [Internet]. NATURE PHYSICS. 2020 ;Available from: https://doi.org/10.1038/s41567-020-0846-4
    • Vancouver

      Gardim FG, Giacalone G, Luzum M, Ollitrault J-Y. Thermodynamics of hot strong-interaction matter from ultrarelativistic nuclear collisions [Internet]. NATURE PHYSICS. 2020 ;Available from: https://doi.org/10.1038/s41567-020-0846-4

    Referências citadas na obra
    Busza, W., Rajagopal, K. & van der Schee, W. Heavy ion collisions: the big picture, and the big questions. Ann. Rev. Nucl. Part. Sci. 68, 339–376 (2018).
    Romatschke P. & Romatschke U. Relativistic Fluid Dynamics In and Out of Equilibrium (Cambridge Univ. Press, 2019).
    Borsanyi, S. et al. Full result for the QCD equation of state with 2 + 1 flavors. Phys. Lett. B 730, 99–104 (2014).
    Schlichting, S. & Teaney, D. The first fm/c of heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 69, 447–476 (2019).
    Broniowski, W. & Florkowski, W. Explanation of the RHIC p ⟂ spectra in a thermal model with expansion. Phys. Rev. Lett. 87, 272302 (2001).
    Alba, P. et al. Effect of the QCD equation of state and strange hadronic resonances on multiparticle correlations in heavy ion collisions. Phys. Rev. C 98, 034909 (2018).
    Mazeliauskas, A., Floerchinger, S., Grossi, E. & Teaney, D. Fast resonance decays in nuclear collisions. Eur. Phys. J. C 79, 284 (2019).
    Van Hove, L. et al. Multiplicity dependence of p t spectrum as a possible signal for a phase transition in hadronic collisions. Phys. Lett. B 118, 138–140 (1982).
    Campanini, R. & Ferri, G. Experimental equation of state in proton–proton and proton–antiproton collisions and phase transition to quark gluon plasma. Phys. Lett. B 703, 237–245 (2011).
    McLerran, L. D., Kataja, M., Ruuskanen, P. V. & von Gersdorff, H. Studies of the hydrodynamical evolution of matter produced in fluctuations in p anti-p collisions and in ultrarelativistic nuclear collisions. 2. Transverse momentum distributions. Phys. Rev. D 34, 2755–2763 (1986).
    Blaizot, J. P. & Ollitrault, J. Y. Equation of state and hydrodynamics of quark gluon plasmas. Phys. Lett. B 191, 21–26 (1987).
    Ollitrault, J. Y. et al. Relativistic hydrodynamics for heavy-ion collisions. Eur. J. Phys. 29, 275–302 (2008).
    Bernhard, J. E., Moreland, J. S., Bass, S. A., Liu, J. & Heinz, U. Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark–gluon plasma medium. Phys. Rev. C 94, 024907 (2016).
    Huovinen, P. & Petreczky, P. QCD equation of state and hadron resonance gas. Nucl. Phys. A 837, 26–53 (2010).
    Monnai, A. & Hirano, T. Effects of bulk viscosity at freezeout. Phys. Rev. C 80, 054906 (2009).
    ALICE Collaboration Transverse momentum spectra and nuclear modification factors of charged particles in Xe–Xe collisions at $$\sqrt{{s}_{{\rm{NN}}}}$$ = 5.44 TeV .Phys. Lett. B 788, 166–179 (2019).
    Andronic, A., Braun-Munzinger, P., Redlich, K. & Stachel, J. Decoding the phase structure of QCD via particle production at high energy. Nature 561, 321–330 (2018).
    Hanus, P., Mazeliauskas, A. & Reygers, K. Entropy production in pp and Pb–Pb collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C 100, 064903 (2019).
    ALICE Collaboration Centrality dependence of the charged-particle multiplicity density at midrapidity in Pb–Pb collisions at $$\sqrt{{s}_{{\rm{NN}}}}$$ = 5.02 TeV .Phys. Rev. Lett. 116, 222302 (2016).
    ALICE Collaboration Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb–Pb collisions at $$\sqrt{{s}_{NN}}=2.76$$ TeV. Phys. Rev. Lett. 106, 032301 (2011).
    ALICE Collaboration Transverse momentum spectra and nuclear modification factors of charged particles in pp, p–Pb and Pb–Pb collisions at the LHC. J. High Energy Phys. 1811, 013 (2018).
    Pratt, S., Sangaline, E., Sorensen, P. & Wang, H. Constraining the equation of state of super-hadronic matter from heavy-ion collisions. Phys. Rev. Lett. 114, 202301 (2015).
    PHENIX Collaboration Spectra and ratios of identified particles in Au+Au and d+Au collisions at $$\sqrt{{s}_{NN}}=200$$ GeV. Phys. Rev. C 88, 024906 (2013).
    Rogly, R., Giacalone, G. & Ollitrault, J. Y. Geometric scaling in symmetric nucleus–nucleus collisions. Nucl. Phys. A 982, 355–358 (2019).
    Giacalone, G., Mazeliauskas, A. & Schlichting, S. Hydrodynamic attractors, initial state energy and particle production in relativistic nuclear collisions. Phys. Rev. Lett. 123, 262301 (2019).
    PHOBOS Collaboration Centrality dependence of the charged particle multiplicity near mid-rapidity in Au + Au collisions at $$\sqrt{s}$$ (NN) = 130-GeV and 200-GeV. Phys. Rev. C 65, 061901 (2002).
    Bjorken, J. D. et al. Highly relativistic nucleus–nucleus collisions: the central rapidity region. Phys. Rev. D 27, 140–151 (1983).
    Kolb P. F. & Heinz U. W. in Quark-Gluon Plasma 3 (eds Hwa, R. C. & Wang X.-N.) 634–714 (World Scientific, 2004).
    Vredevoogd, J. & Pratt, S. Universal flow in the first stage of relativistic heavy ion collisions. Phys. Rev. C 79, 044915 (2009).
    van der Schee, W., Romatschke, P. & Pratt, S. Fully dynamical simulation of central nuclear collisions. Phys. Rev. Lett. 111, 222302 (2013).
    Keegan, L., Kurkela, A., Mazeliauskas, A. & Teaney, D. Initial conditions for hydrodynamics from weakly coupled pre-equilibrium evolution. J. High Energy Phys. 1608, 171 (2016).
    Eskola, K. J., Kajantie, K. & Tuominen, K. Centrality dependence of multiplicities in ultrarelativistic nuclear collisions. Phys. Lett. B 497, 39–43 (2001).
    Kolb, P. F., Heinz, U. W., Huovinen, P., Eskola, K. J. & Tuominen, K. Centrality dependence of multiplicity, transverse energy, and elliptic flow from hydrodynamics. Nucl. Phys. A 696, 197–215 (2001).
    Miller, M. L., Reygers, K., Sanders, S. J. & Steinberg, P. Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007).
    ALICE Collaboration Centrality and pseudorapidity dependence of the charged-particle multiplicity density in Xe–Xe collisions at $$\sqrt{{s}_{{\rm{NN}}}}$$ = 5.44TeV . Phys. Lett. B 790, 35–48 (2019).
    ALICE Collaboration Centrality determination of Pb–Pb collisions at $$\sqrt{{s}_{NN}}$$ = 2.76 TeV with ALICE. Phys. Rev. C 88, 044909 (2013).
    Moreland, J. S., Bernhard, J. E. & Bass, S. A. Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions. Phys. Rev. C 92, 011901 (2015).
    Hama, Y., Kodama, T. & Socolowski, O. Jr. Topics on hydrodynamic model of nucleus–nucleus collisions. Braz. J. Phys. 35, 24–51 (2005).
    Broniowski, W., Chojnacki, M. & Obara, L. Size fluctuations of the initial source and the event-by-event transverse momentum fluctuations in relativistic heavy-ion collisions. Phys. Rev. C 80, 051902 (2009).
    Giacalone, G., Noronha-Hostler, J., Luzum, M. & Ollitrault, J. Y. Hydrodynamic predictions for 5.44 TeV Xe+Xe collisions. Phys. Rev. C 97, 034904 (2018).
    Schenke, B., Jeon, S. & Gale, C. (3+1)D hydrodynamic simulation of relativistic heavy-ion collisions. Phys. Rev. C 82, 014903 (2010).
    Schenke, B., Jeon, S. & Gale, C. Higher flow harmonics from (3+1)D event-by-event viscous hydrodynamics. Phys. Rev. C 85, 024901 (2012).
    Paquet, J. F. et al. Production of photons in relativistic heavy-ion collisions. Phys. Rev. C 93, 044906 (2016).
    Niemi, H., Eskola, K. J. & Paatelainen, R. Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions. Phys. Rev. C 93, 024907 (2016).
    Heinz, U. & Snellings, R. Collective flow and viscosity in relativistic heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 63, 123–151 (2013).
    Cooper, F. & Frye, G. Comment on the single particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production. Phys. Rev. D 10, 186–189 (1974).
    Bazavov, A., HotQCD Collaboration. et al. Chiral crossover in QCD at zero and non-zero chemical potentials. Phys. Lett. B 795, 15–21 (2019).
    Gale, C., Jeon, S., Schenke, B., Tribedy, P. & Venugopalan, R. Event-by-event anisotropic flow in heavy-ion collisions from combined Yang–Mills and viscous fluid dynamics. Phys. Rev. Lett. 110, 012302 (2013).
    Eskola, K. J., Niemi, H., Paatelainen, R. & Tuominen, K. Predictions for multiplicities and flow harmonics in 5.44 TeV Xe+Xe collisions at the CERN Large Hadron Collider. Phys. Rev. C 97, 034911 (2018).
    Weller, R. D. & Romatschke, P. One fluid to rule them all: viscous hydrodynamic description of event-by-event centralp+p, p+Pb and Pb+Pb collisions at $$\sqrt{s}=5.02$$ TeV. Phys. Lett. B 774, 351–356 (2017).
    Dubla, A. et al. Towards QCD-assisted hydrodynamics for heavy-ion collision phenomenology. Nucl. Phys. A 979, 251–264 (2018).
    Teaney, D. et al. The effects of viscosity on spectra, elliptic flow, and HBT radii. Phys. Rev. C 68, 034913 (2003).
    Dusling, K., Moore, G. D. & D., Teaney Radiative energy loss and v 2 spectra for viscous hydrodynamics. Phys. Rev. C 81, 034907 (2010).
    Bozek, P. et al. Bulk and shear viscosities of matter created in relativistic heavy-ion collisions. Phys. Rev. C 81, 034909 (2010).
    Teaney, D., Lauret, J. & Shuryak, E. V. Flow at the SPS and RHIC as a quark gluon plasma signature. Phys. Rev. Lett. 86, 4783–4786 (2001).
    Petersen, H., Steinheimer, J., Burau, G., Bleicher, M. & Stocker, H. A fully integrated transport approach to heavy ion reactions with an intermediate hydrodynamic stage. Phys. Rev. C 78, 044901 (2008).
    Petersen, H., Steinheimer, J., Bleicher, M. & Stocker, H. The <m T> excitation function: freeze-out and equation of state dependence. J. Phys. G 36, 055104 (2009).
    Luo, X. Exploring the QCD phase structure with beam energy scan in heavy-ion collisions. Nucl. Phys. A 956, 75–82 (2016).
    Monnai, A. & Ollitrault, J. Y. Constraining the equation of state with identified particle spectra. Phys. Rev. C 96, 044902 (2017).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020