Exportar registro bibliográfico


Metrics:

A multi-aspect approach to ontology matching based on Bayesian cluster ensembles (2019)

  • Authors:
  • Autor USP: ALMEIDA JUNIOR, JORGE RADY DE - EP
  • Unidade: EP
  • DOI: 10.1007/s10844-019-00583-8
  • Assunto: ONTOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s10844-019-00583-8 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      IPPOLITO, André; ALMEIDA JUNIOR, Jorge Rady de. A multi-aspect approach to ontology matching based on Bayesian cluster ensembles. Journal of Intelligent Information Systems[S.l.], Springer, p. 1-24, 2019. Disponível em: < https://doi.org/10.1007/s10844-019-00583-8 > DOI: 10.1007/s10844-019-00583-8.
    • APA

      Ippolito, A., & Almeida Junior, J. R. de. (2019). A multi-aspect approach to ontology matching based on Bayesian cluster ensembles. Journal of Intelligent Information Systems, 1-24. doi:10.1007/s10844-019-00583-8
    • NLM

      Ippolito A, Almeida Junior JR de. A multi-aspect approach to ontology matching based on Bayesian cluster ensembles [Internet]. Journal of Intelligent Information Systems. 2019 ;1-24.Available from: https://doi.org/10.1007/s10844-019-00583-8
    • Vancouver

      Ippolito A, Almeida Junior JR de. A multi-aspect approach to ontology matching based on Bayesian cluster ensembles [Internet]. Journal of Intelligent Information Systems. 2019 ;1-24.Available from: https://doi.org/10.1007/s10844-019-00583-8

    Referências citadas na obra
    Algergawy, A., Massmann, S., Rahm, E. (2011). A clustering-based approach for large-scale ontology matching. ADBIS, 6909, 415–428.
    Algergawy, A., Moawed, S., Sarhan, A., Eldosouky, A., Saake, G. (2014). Improving clustering-based schema matching using latent semantic indexing. Trans Large-Scale Data- and Knowledge-Centered Systems, 15, 102–123.
    Blei, D., Ng, A., Jordan, M. (2003). Latent dirichlet allocation. Journal of Machine learning Research (3) 993–1022.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008(10), P10,008.
    Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D. (2008). On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 172–188.
    Clauset, A., Newman, M.E.J., Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70, 066,111.
    Coskun, G, Rothe, M, Teymourian, K, Paschke, A. (2011). Applying community detection algorithms on ontologies for identifying concept groups, Frontiers in Artificial Intelligence and Applications, vol 230. IOS Press Books.
    Euzenat, J, & Shvaiko, P. (2013). Ontology matching. Springer.
    Ferrara, A., Genta, L., Montanelli, S., Castano, S. (2015). Dimensional clustering of linked data: techniques and applications. Trans Large-Scale Data- and Knowledge-Centered Systems, 19, 55–86.
    Fortunato, S. (2009). Community detection in graphs. arXiv: 0906 .
    Ghosh, J, & Acharya, A. (2013). Cluster ensembles: theory and applications. In: Data Clustering: Algorithms and Applications, pp 551–570.
    Harary, F. (1969). Graph theory. Addison-Wesley.
    Honkela, T., Hyvärinen, A, Väyrynen, JJ. (2010). Wordica - emergence of linguistic representations for words by independent component analysis. Natural Language Engineering, 16(3), 277–308.
    Hu, B., Kalfoglou, Y., Alani, H., Dupplaw, D., Lewis, P.H., Shadbolt, N. (2006). Semantic metrics. In Staab, S., & Svátek, V. (Eds.) EKAW, (Vol. 4248 pp. 166–181). Berlin: Springer, Lecture Notes in Computer Science.
    Hyvärinen, A, Karhunen, J, Oja, E. (2001). Independent component analysis. John Wiley and Sons.
    Ippolito, A., & de Almeida Junior, J.R. (2016). Ontology matching based on multi-aspect consensus clustering of communities. In Hammoudi, S., Maciaszek, L.A., Missikoff, M., Camp, O., Cordeiro, J. (Eds.) ICEIS 2016 - Proceedings of the 18th International Conference on Enterprise Information Systems, Volume 2, SciTePress (pp. 321–326).
    Jain, A.K. (2010). Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8), 651–666.
    Jain, A.K., Murty, M.N., Flynn, P.J. (1999). Data clustering: a review. ACM Computing Surveys, 31(3), 264–323.
    Karpis, G., & Kumar, V. (1998). A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal on Scientific Computing, 20(1), 359–392.
    Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S. (1999). Multilevel hypergraph partitioning: applications in vlsi domain. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 7(1), 69–79.
    Kaufman, L., & Rousseeuw, P.J. (1990). Finding groups in data: an introduction to cluster analysis. John Wiley.
    Kondrak, G. (2005). N-gram similarity and distance. In Consens, M.P., & Navarro, G. (Eds.) 12Th International Conference String Processing and Information Retrieval (SPIRE), (Vol. 3772 pp. 115–126). Berlin: Springer, Lecture Notes in Computer Science.
    Kullback, S., & Leibler, R.A. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22(1), 79–86.
    Landauer, T.K., Foltz, P.W., Laham, D. (1998). Introduction to latent semantic analysis. Discourse Processes, 25, 259–284.
    Levenshtein, V. (1966). Binary codes capable of correcting deletions and insertions and reversals. Soviet Physics Doklady, 10, 707–710.
    Manning, C.D., Raghavan, P, Schütze, H. (2008). Introduction to information retrieval. Cambridge University Press.
    Miller, G.A. (1995). WordNet: a lexical database for english. Communications of the ACM, pp. 39–45.
    Pons, P., & Latapy, M. (2006). Computing communities in large networks using random walks. Journal of Graph Algorithms and Applications, 10(2), 191–218.
    Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physical Review E, 74, 016,110.
    Rousseeuw, P. (1987). Silhouette: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65.
    Sokal, R.R., & Michener, C.D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 1409–1438.
    Strehl, A., & Ghosh, J. (2003). Cluster ensembles: a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research, 3, 583–617.
    Tran, T., Wang, H., Haase, P. (2009). Hermes: Data web search on a pay-as-you-go integration infrastructure. Web Semantics: Science, Services and Agents on the World Wide Web, 7(3), 189–203.
    Wang, H., Shan, H., Banerjee, A. (2011). Bayesian cluster ensembles. Statistical Analysis and Data Mining, 4(1), 54–70.
    Ward, J. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236–244.
    Wasserman, S., & Faust, K. (1994). Social network analysis: methods and applications. Cambridge University Press.
    West, D.B. (2001). Introduction to graph theory, 2nd edn. Prentice Hall.
    Zhang, H., Hu, W., Qu, Y. (2012). Vdoc+: a virtual document based approach for matching large ontologies using mapreduce. Journal of Zhejiang University - Science C, 13(4), 257–267.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020