Exportar registro bibliográfico


Intraspecific variation on epiphytic bacterial community from Laguncularia racemosa phylloplane (2019)

  • Authors:
  • Unidade: ESALQ
  • DOI: 10.1007/s42770-019-00138-7
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s42770-019-00138-7 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: bronze

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MOITINHO, Marta Alves; CHIARAMONTE, Josiane Barros; SOUZA, Danilo T; et al. Intraspecific variation on epiphytic bacterial community from Laguncularia racemosa phylloplane. Brazilian Journal of Microbiology, Cham, Springer, v. 50, p. 1041-1050, 2019. Disponível em: < https://doi.org/10.1007/s42770-019-00138-7 > DOI: 10.1007/s42770-019-00138-7.
    • APA

      Moitinho, M. A., Chiaramonte, J. B., Souza, D. T., Solano, J. H., Bononi, L., Melo, I. S. de, & Taketani, R. G. (2019). Intraspecific variation on epiphytic bacterial community from Laguncularia racemosa phylloplane. Brazilian Journal of Microbiology, 50, 1041-1050. doi:10.1007/s42770-019-00138-7
    • NLM

      Moitinho MA, Chiaramonte JB, Souza DT, Solano JH, Bononi L, Melo IS de, Taketani RG. Intraspecific variation on epiphytic bacterial community from Laguncularia racemosa phylloplane [Internet]. Brazilian Journal of Microbiology. 2019 ; 50 1041-1050.Available from: https://doi.org/10.1007/s42770-019-00138-7
    • Vancouver

      Moitinho MA, Chiaramonte JB, Souza DT, Solano JH, Bononi L, Melo IS de, Taketani RG. Intraspecific variation on epiphytic bacterial community from Laguncularia racemosa phylloplane [Internet]. Brazilian Journal of Microbiology. 2019 ; 50 1041-1050.Available from: https://doi.org/10.1007/s42770-019-00138-7

    Referências citadas na obra
    Holguin G, Guzman MA, Bashan Y (1992) Two new nitrogen-fixing bacteria from the rhizosphere of mangrove trees : their isolation , identification and in vitro interaction with rhizosphere Staphylococcus sp. FEMS Microbiol Ecol 101(3):207–216
    Baskaran R, Mohan P, Sivakumar K, Ragavan P, Sachithanandam V (2012) Phyllosphere microbial populations of ten true mangrove species of the Andaman Island. Int J Microbiol Res [Internet] 3(26):124–127 Available from: http://idosi.org/ijmr/ijmr3(2)12/8.pdf
    Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33(4):265–278
    Wen M, Lin X, Xie M, Wang Y, Shen X, Liufu Z, Wu CI, Shi S, Tang T (2016) Small RNA transcriptomes of mangroves evolve adaptively in extreme environments. Sci Rep [Internet] 6:1–12. Available from:. https://doi.org/10.1038/srep27551
    Sobrado MA (2004) Influence of external salinity on the osmolality of xylem sap , leaf tissue and leaf gland secretion of the mangrove Laguncularia racemosa ( L .). Gaertn Trees 18(4):422–427
    Iermak I, Vink J, Bader AN, Wientjes E, Van Amerongen H (2016) Visualizing heterogeneity of photosynthetic properties of plant leaves with two-photon fluorescence lifetime imaging microscopy. Biochim Biophys Acta - Bioenerg 1857(9):1473–1478. Available from: https://doi.org/10.1016/j.bbabio.2016.05.005
    Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Joseph Wright S, Sheremet’ev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné LD (2015) The global spectrum of plant form and function. Nature [Internet] 529(7585):1–17. Available from:. https://doi.org/10.1038/nature16489
    Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P (2017) Interplay between innate immunity and the plant microbiota. Annu Rev Phytopathol [Internet] 55(1):565–589. Available from:. https://doi.org/10.1146/annurev-phyto-080516-035623
    Vorholt JA (2012) Microbial life in the phyllosphere. Nat Publ Gr [Internet] 10(12):828–840. Available from:. https://doi.org/10.1038/nrmicro2910
    Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere MINIREVIEW microbiology of the phyllosphere. Appl Environ Microbiol 69(4):1875–1883
    Bringel F (2015) Pivotal roles of phyllosphere microorganisms at the interface between plant functioning and atmospheric trace gas dynamics. Front Microbiol 6(May):1–14
    Ryffel F, Helfrich EJN, Kiefer P, Peyriga L, Portais JC, Piel J, Vorholt JA (2016) Metabolic footprint of epiphytic bacteria on Arabidopsis thaliana leaves. ISME J 10(3):632–643
    Karamanoli K, Menkissoglu-Spiroudi U, Bosabalidis AM, Vokou D, Constantinidou HIA (2005) Bacterial colonization of the phyllosphere of nineteen plant species and antimicrobial activity of their leaf secondary metabolites against leaf associated bacteria. Chemoecology. 15(2):59–67
    Laforest-Lapointe I, Messier C, Kembel SW (2016) Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome [Internet] 4:1–10. Available from:. https://doi.org/10.1186/s40168-016-0174-1
    Kembel SW, Connor TKO, Arnold HK, Hubbell SP, Wright SJ (2014) Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. PNAS. 111(38):13715–13720
    Lambais MR, Crowley DE, Cury JC, Bull RC, Rodrigues RR (2006) American Association for the Advancement of Science. Science (80- ) 312(5782):18–19
    Müller T, Ruppel S (2014) Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol 87(1):2–17
    Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world Koppen-Geiger climate classification map. Hydrol Earth Syst Sci 11:1633–1644
    Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”;. Proc Natl Acad Sci U S A [Internet] 2006;103(32):12115–12120. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16880384%5Cn , http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1524930
    Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NFY, Zhou HW (2012) Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Appl Environ Microbiol 78(23):8264–8271
    Moitinho MA, Bononi L, Souza DT, Melo IS, Taketani RG (2018) Bacterial succession decreases network complexity during plant material decomposition in mangroves. Microb Ecol 76(4):954–963
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) Correspondence QIIME allows analysis of high- throughput community sequencing data intensity normalization improves color calling in SOLiD sequencing. Nat Publ Gr [Internet] 7(5):335–336. Available from:. https://doi.org/10.1038/nmeth0510-335
    R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing [Internet], Vienna, Austria Available from: http://www.r-project.org
    McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217
    Love MI, Anders S, Huber W (2014) Differential analysis of count data - the DESeq2 package [Internet]. Genome Biol 15 550 p. Available from: https://doi.org/10.1101/002832%5Cnhttp://dx.doi.org/10.1186/s13059-014-0550-8
    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. United Kingdom: Journal of the Royal Statiscal Society (Series B). Wiley-Blackwell; 1995
    Andreote FD, Jiménez DJ, Chavez D, Dias ACF, Luvizotto DM, Dini-Andreote F et al (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS One [Internet] 7(6):e38600. https://doi.org/10.1371/journal.pone.0038600 Available from: www.plosone.org
    Dias AC, Franco, Taketani RG, Andreote FD, Luvizotto DM, da Silva JL et al (2012) Interspecific variation of the bacterial community structure in the phyllosphere of. Brazilian J Microbiol 43(2):653–660
    Dos Santos HF, Cury JC, do Carmo FL, Dos Santos AL, Tiedje J, van Elsas JD et al (2011) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS One 6(3):1–8
    Mendes LW, Tsai SM (2014) Variations of bacterial community structure and composition in mangrove sediment at different depths in Southeastern Brazil. Diversity. 6:827–843
    Rigonato J, Alvarenga DO, Andreote FD, Cavalcante A, Dias F, Melo IS et al (2012) Cyanobacterial diversity in the phyllosphere of a mangrove forest. FEMS Microbiol Ecol 80:312–322
    Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10
    Ruiz-Pérez CA, Restrepo S, Zambrano MM (2016) Microbial and functional diversity within the phyllosphere of Espeletia species in an Andean high-mountain ecosystem. Appl Environ Microbiol 82(6):1807–1817
    Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8(2):e56329
    Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B (2009) Schlapbach R. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria, PNAS
    Kim M, Singh D, Lai-Hoe A, Go R, Rahim RA, Ainuddin AN et al (2012) Distinctive phyllosphere bacterial communities in tropical trees. Microb Ecol 63(3):674–681
    Taketani RG, Franco NO, Rosado AS, van Elsas JD (2010) Microbial community response to a simulated hydrocarbon spill in mangrove sediments. J Microbiol [Internet] 48(1):7–15. Available from:. https://doi.org/10.1007/s12275-009-0147-1
    Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2010) The ecology of the phyllosphere : geographic and phylogenetic variability in the distribution of bacteria. Environ Microbiol 12:2885–2893
    Lovelock CE, Feller IC, McKee KL, Thompson R (2005) Variation in mangrove forest structure and sediment characteristics in Bocas del Toro. Panama Caribb J Sci 41(3):456–464
    Duke NC, Ball MC, Ellison JC (1998) Factors influencing biodiversity and distributional gradients in mangroves. Glob Ecol Biogeogr Lett 7(1):27–47
    Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7(7):601–613
    Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol [internet] 64:807–838 Available from: http://www.ncbi.nlm.nih.gov/pubmed/23373698
    Vokou D, Vareli K, Zarali E, Karamanoli K, Constantinidou HIA, Monokrousos N, Halley JM, Sainis I (2012) Exploring biodiversity in the bacterial community of the Mediterranean phyllosphere and its relationship with airborne bacteria. Microb Ecol 64(3):714–724
    Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N (2011) Variability in the distribution of bacteria on tree leaves. Environ Microbiol 12(11):2885–2893
    Gomes NCM, Borges LR, Paranhos R, Pinto FN, Leda CS (2008) Exploring the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiol Ecol 66(2006):96–109
    Geyer W (2010) Estuarine salinity structure and circulation. In: Valle-Levinson A (ed) Contemporary Issues in Estuarine Physics (pp. 12-26). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511676567.003
    Cunha-Lignon M (2001) Dinâmica do manguezal no Sistema de Cananéia-Iguape, Estado de São Paulo – Brasil. Acta Bot Brasilica 15(2):56
    Levin LA, Boesch DF, Covich A, Dahm C, Erséus C, Ewel KC, Kneib RT, Moldenke A, Palmer MA, Snelgrove P, Strayer D, Weslawski JM (2001) The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems. 4(5):430–451
    Soares Júnior FL, Dias ACF, Fasanella CC, Taketani RG, de Sousa Lima AO, Melo IS et al (2013) Endo-and exoglucanase activities in bacteria from mangrove sediment. Brazilian J Microbiol 44(3):969–976
    Bouvier TC, Del Giorgio PA (2002) Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries. Limnol Oceanogr 47(2):453–470
    Yang J, Ma L, Jiang H, Wu G, Dong H (2016) Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci Rep [Internet] 6(1):25078 Available from: http://www.nature.com/articles/srep25078
    Jiang H, Huang Q, Deng S, Dong H, Yu B (2010) Planktonic actinobacterial diversity along a salinity gradient of a river and five lakes on the Tibetan Plateau. Extremophiles. 14(4):367–376
    Dillon JG, Carlin M, Gutierrez A, Nguyen V, Mclain N (2013) Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern , Baja CA Sur. Mexico Front Microbiol 4(December):1–13
    Knief C, Ramette A, Frances L, Alonso-Blanco C, Vorholt JA (2010) Site and plant species are important determinants of the Methylobacterium community composition in the plant phyllosphere. ISME J [Internet] 4(6):719–728. Available from:. https://doi.org/10.1038/ismej.2010.9
    Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD (2010) Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl Environ Microbiol 76(24):8117–8125
    Dini-andreote F, Stegen JC, Dirk J, Elsas V, Falcão J (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. PNAS112(11):E1326–E1332

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021