Exportar registro bibliográfico


Metrics:

A comparative chemical study of PM10 in three Latin American cities: Lima, Medellín, and São Paulo (2019)

  • Authors:
  • USP affiliated authors: VASCONCELLOS, PEROLA DE CASTRO - IQ ; PEREIRA, GUILHERME MARTINS - IAG
  • Unidades: IQ; IAG
  • DOI: 10.1007/s11869-019-00735-3
  • Assunto: POLUIÇÃO ATMOSFÉRICA
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s11869-019-00735-3 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PEREIRA, Guilherme Martins et al. A comparative chemical study of PM10 in three Latin American cities: Lima, Medellín, and São Paulo. Air Quality, Atmosphere and Health, v. 12, p. 1141-1152, 2019Tradução . . Disponível em: http://dx.doi.org/10.1007/s11869-019-00735-3. Acesso em: 21 mar. 2023.
    • APA

      Pereira, G. M., Oraggio, B., Teinilä, K., Custódio, D., Huang, X., Hillamo, R., et al. (2019). A comparative chemical study of PM10 in three Latin American cities: Lima, Medellín, and São Paulo. Air Quality, Atmosphere and Health, 12, 1141-1152. doi:10.1007/s11869-019-00735-3
    • NLM

      Pereira GM, Oraggio B, Teinilä K, Custódio D, Huang X, Hillamo R, Alves CA, Balasubramanian R, Rojas NY, Ccoyllo ORS, Vasconcellos P de C. A comparative chemical study of PM10 in three Latin American cities: Lima, Medellín, and São Paulo [Internet]. Air Quality, Atmosphere and Health. 2019 ; 12 1141-1152.[citado 2023 mar. 21 ] Available from: http://dx.doi.org/10.1007/s11869-019-00735-3
    • Vancouver

      Pereira GM, Oraggio B, Teinilä K, Custódio D, Huang X, Hillamo R, Alves CA, Balasubramanian R, Rojas NY, Ccoyllo ORS, Vasconcellos P de C. A comparative chemical study of PM10 in three Latin American cities: Lima, Medellín, and São Paulo [Internet]. Air Quality, Atmosphere and Health. 2019 ; 12 1141-1152.[citado 2023 mar. 21 ] Available from: http://dx.doi.org/10.1007/s11869-019-00735-3

    Referências citadas na obra
    Alvarez HB, Echeverria RS, Alvarez PS, Krupa S (2013) Air quality standards for particulate matter (PM) at high altitude cities. Environ Pollut 173:255–256. https://doi.org/10.1016/j.envpol.2012.09.025
    Alves CA, Vicente AMP, Gomes J, Nunes T, Duarte M, Bandowe BAM (2016) Polycyclic aromatic hydrocarbons (PAHs) and their derivatives (oxygenated-PAHs, nitrated-PAHs and azaarenes) in size-fractionated particles emitted in an urban road tunnel. Atmos Res 180:128–137. https://doi.org/10.1016/j.atmosres.2016.05.013
    Amarillo AC, Carreras H (2016) Quantifying the influence of meteorological variables on particle-bound PAHs in urban environments. Atmos Pollut Res 7:597–602. https://doi.org/10.1016/j.apr.2016.02.006
    Amato F, Alastuey A, Karanasiou A, Lucarelli F, Nava S, Calzolai G, Severi M, Becagli S, Gianelle VL, Colombi C, Alves C, Custódio D, Nunes T, Cerqueira M, Pio C, Eleftheriadis K, Diapouli E, Reche C, Minguillón MC, Manousakas MI, Maggos T, Vratolis S, Harrison RM, Querol X (2016) AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities. Atmos Chem Phys 16:3289–3309. https://doi.org/10.5194/acp-16-3289-2016
    Baker AR, Thomas M, Bange HW, Plasencia Sanchez E (2016) Soluble trace metals in aerosols over the tropical south-east Pacific offshore of Peru. Biogeosciences 13:817–825. https://doi.org/10.5194/bg-13-817-2016
    Behera SN, Cheng J, Huang X, Zhu Q, Liu P, Balasubramanian R (2015) Chemical composition and acidity of size-fractionated inorganic aerosols of 2013-14 winter haze in Shanghai and associated health risk of toxic elements. Atmos Environ 122:259–271. https://doi.org/10.1016/j.atmosenv.2015.09.053
    Brito J, Rizzo LV, Herckes P, Vasconcellos PC, Caumo SES, Fornaro A, Ynoue RY, Artaxo P, Andrade MF (2013) Physical–chemical characterization of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmos Chem Phys 13:12199–12213. https://doi.org/10.5194/acp-13-12199-2013
    Calvo AI, Alves C, Castro A, Pont V, Vicente AM, Fraile R (2013) Research on aerosol sources and chemical composition: past, current and emerging issues. Atmos Res 120–121:1–28. https://doi.org/10.1016/j.atmosres.2012.09.021
    Carreras HA, Gómez-arroyo S, Murillo-tovar MA, Amador-muñoz O (2013) Composition and mutagenicity of PAHs associated with urban airborne particles in Córdoba, Argentina. Environ Pollut 178:403–410. https://doi.org/10.1016/j.envpol.2013.03.016
    Caumo S, Claeys M, Maenhaut W (2016) Physicochemical characterization of winter PM10 aerosol impacted by sugarcane burning from São Paulo city, Brazil. Atmos Environ 145:272–279. https://doi.org/10.1016/j.atmosenv.2016.09.046
    Charron A, Polo-Rehn L, Besombes J et al (2018) Identification and quantification of particulate tracers of exhaust and non-exhaust vehicle emissions. Atmos Chem Phys Discuss in review:1–32. https://doi.org/10.5194/acp-2018-816
    Chithra VS, Shiva Nagendra SM (2013) Chemical and morphological characteristics of indoor and outdoor particulate matter in an urban environment. Atmos Environ 77:579–587. https://doi.org/10.1016/j.atmosenv.2013.05.044
    Custódio D, Pinho I, Cerqueira M, Nunes T, Pio C (2014) Indoor and outdoor suspended particulate matter and associated carbonaceous species at residential homes in northwestern Portugal. Sci Total Environ 473–474:72–76. https://doi.org/10.1016/j.scitotenv.2013.12.009
    da Rocha GO, de Vasconcellos PC, Ávila SG et al (2012) Seasonal distribution of airborne trace elements and water-soluble ions in São Paulo Megacity, Brazil. J Braz Chem Soc 23:1915–1924. https://doi.org/10.1590/S0103-50532012005000062
    da Silva MF, de Assunção JV, de Fátima AM, Pesquero CR (2010) Characterization of metal and trace element contents of particulate matter (PM10) emitted by vehicles running on Brazilian fuels\-hydrated ethanol and gasoline with 22% of anhydrous ethanol. J Toxicol Environ Health - A Curr Issues 73:901–909. https://doi.org/10.1080/15287391003744849
    de La Torre-Roche RJ, Lee WY, Campos-Díaz SI (2009) Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. J Hazard Mater 163:946–958. https://doi.org/10.1016/j.jhazmat.2008.07.089
    de Oliveira Alves N, Brito J, Caumo S et al (2015) Biomass burning in the Amazon region: aerosol source apportionment and associated health risk assessment. Atmos Environ 120:277–285. https://doi.org/10.1016/j.atmosenv.2015.08.059
    de Oliveira Galvão MF, de Oliveira AN, Ferreira PA et al (2018) Biomass burning particles in the Brazilian Amazon region: mutagenic effects of nitro and oxy-PAHs and assessment of health risks. Environ Pollut 233:960–970. https://doi.org/10.1016/j.envpol.2017.09.068
    Duarte RMBO, Matos JTV, Paula AS, Lopes SP, Pereira G, Vasconcellos P, Gioda A, Carreira R, Silva AMS, Duarte AC, Smichowski P, Rojas N, Sanchez-Ccoyllo O (2017) Structural signatures of water-soluble organic aerosols in contrasting environments in South America and Western Europe. Environ Pollut 227:513–525. https://doi.org/10.1016/j.envpol.2017.05.011
    Geng N, Wang J, Xu Y, Zhang W, Chen C, Zhang R (2013) PM2.5 in an industrial district of Zhengzhou, China: chemical composition and source apportionment. Particuology 11:99–109. https://doi.org/10.1016/j.partic.2012.08.004
    Hall D, Wu C-Y, Hsu Y-M, Stormer J, Engling G, Capeto K, Wang J, Brown S, Li HW, Yu KM (2012) PAHs, carbonyls, VOCs and PM2.5 emission factors for pre-harvest burning of Florida sugarcane. Atmos Environ 55:164–172. https://doi.org/10.1016/j.atmosenv.2012.03.034
    Ianniello A, Spataro F, Esposito G, Allegrini I, Hu M, Zhu T (2011) Chemical characteristics of inorganic ammonium salts in PM2.5 in the atmosphere of Beijing (China). Atmos Chem Phys 11:10803–10822. https://doi.org/10.5194/acp-11-10803-2011
    Lanzaco BL, Olcese LE, Palancar GG, Toselli BM (2017) An improved aerosol optical depth map based on machine-learning and modis data: development and application in South America. Aerosol Air Qual Res 17:1523–1536. https://doi.org/10.4209/aaqr.2016.11.0484
    Martins VS, Lyapustin A, Carvalho LAS, Barbosa CCF, Novo EMLM (2017) Validation of high-resolution MAIAC aerosol product over South America. J Geophys Res Atmos 122:7537–7559. https://doi.org/10.1002/2016JD026301
    MAVDT (2006) Ministerio de Ambiente, Vivienda y Desarrollo Territorial - Resolución 601 de 2006 (Ministry of environment, housing and territorial development - resolution 601 of 2006) - Colombia. http://www.minambiente.gov.co/images/normativa/app/resoluciones/59-Resolución 601 de 2006 - calidad del aire.pdf . Accessed 1 May 2018
    de Miranda RM, de Andrade MF, Fornaro A et al (2012) Urban air pollution: a representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Qual Atmos Health 5:63–77. https://doi.org/10.1007/s11869-010-0124-1
    Molina C, Toro AR, Morales SRG et al (2017) Particulate matter in urban areas of south-central Chile exceeds air quality standards. Air Qual Atmos Health 10:653–667. https://doi.org/10.1007/s11869-017-0459-y
    Pacheco MT, Parmigiani MMM, de Andrade MF et al (2017) A review of emissions and concentrations of particulate matter in the three major metropolitan areas of Brazil. J Transp Health 4:53–72. https://doi.org/10.1016/j.jth.2017.01.008
    Pachon JE, Sarmiento Vela H (2008) Heavy metal determination and source emission identification in an industrial location of Bogota-Colombia. Rev Fac Ing Antioquia 43:120–133
    de Paraiso MLS, Gouveia N (2015) Health risks due to pre-harvesting sugarcane burning in São Paulo State, Brazil. Rev Bras Epidemiol 18:691–701. https://doi.org/10.1590/1980-5497201500030014
    Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007
    Pereira GM, Alves NO, Caumo SES et al (2017a) Chemical composition of aerosol in São Paulo, Brazil: influence of the transport of pollutants. Air Qual Atmos Health 10:457–468. https://doi.org/10.1007/s11869-016-0437-9
    Pereira GM, Teinilä K, Custódio D, Gomes Santos A, Xian H, Hillamo R, Alves CA, Bittencourt de Andrade J, Olímpio da Rocha G, Kumar P, Balasubramanian R, Andrade MF, de Castro Vasconcellos P (2017b) Particulate pollutants in the Brazilian city of São Paulo: 1-year investigation for the chemical composition and source apportionment. Atmos Chem Phys 17:11943–11969. https://doi.org/10.5194/acp-17-11943-2017
    de Pereira PAP, Lopes WA, Carvalho LS et al (2007) Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador, Bahia, Brazil. Atmos Environ 41:7837–7850. https://doi.org/10.1016/j.atmosenv.2007.06.013
    Pio CA, Legrand M, Alves CA, Oliveira T, Afonso J, Caseiro A, Puxbaum H, Sanchez-Ochoa A, Gelencsér A (2008) Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmos Environ 42:7530–7543. https://doi.org/10.1016/j.atmosenv.2008.05.032
    Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angew Chem Int Ed 44:7520–7540. https://doi.org/10.1002/anie.200501122
    Pozza SA, Bruno RL, Tazinassi MGG et al (2009) Sources of particulate matter: emission profile of biomass burning. Int J Environ Pollut 36:276–286. https://doi.org/10.1504/IJEP.2009.021832
    Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921. https://doi.org/10.1016/j.atmosenv.2007.12.010
    Ringuet J, Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E (2012) Diurnal/nocturnal concentrations and sources of particulate-bound PAHs, OPAHs and NPAHs at traffic and suburban sites in the region of Paris (France). Sci Total Environ 437:297–305. https://doi.org/10.1016/j.scitotenv.2012.07.072
    Sánchez-Ccoyllo OR, Ordoñez-Aquino C, Martinez RA et al (2015) Determinación cuantitativa de fuentes de material particulado en la atmosfera de la ciudad de Lima-Perú (in spanish). Rev Interdiscip la Univ Antonio Ruiz Montoya:109–121
    Sanchez CHZ, Londoño NAC (2014) Inhalable Particulate Matter Measurements (PM2.5) In The Metropolitan Area Of Valle De Aburrá . Colombia. J Eng Res Appl 4:179–185
    SENAMHI (2013) Evaluación de la calidad del aire en Lima Metropolitana 2011 (In Spanish) - Servicio Nacional de Meteorologia e Hidrologia del Perú (SENAMHI) (Assessment of air quality in Lima Metropolitan Area - 2011- National Service of Meteorology and Hydrology of Per. http://www2.congreso.gob.pe/sicr/cendocbib/con4_uibd.nsf/E926CA7DFE4EE59905257CCA00528B1E/$FILE/1_EvalCalidadAireLima2011.pdf . Accessed 25 Sept 2017
    Silva J, Rojas J, Norabuena M, Molina C, Toro RA, Leiva-Guzmán MA (2017) Particulate matter levels in a South American megacity: the metropolitan area of Lima-Callao, Peru. Environ Monit Assess 189:635. https://doi.org/10.1007/s10661-017-6327-2
    Souza DZ, Vasconcellos PC, Lee H, Aurela M, Saarnio K, Teinilä K, Hillamo R (2014) Composition of PM2.5 and PM10 collected at urban sites in Brazil. Aerosol Air Qual Res 14:168–176. https://doi.org/10.4209/aaqr.2013.03.0071
    Tsapakis M, Stephanou EG (2007) Diurnal cycle of PAHs, nitro-PAHs, and oxy-PAHs in a high oxidation capacity marine background atmosphere. Environ Sci Technol 41:8011–8017. https://doi.org/10.1021/es071160e
    Underhill LJ, Bose S, Williams DL et al (2015) Association of roadway proximity with indoor air pollution in a Peri-urban community in Lima, Peru. Int J Environ Res Public Health 12:13466–13481. https://doi.org/10.3390/ijerph121013466
    Valle-Hernández BL, Mugica-Álvarez V, Salinas-Talavera E, Amador-Muñoz O, Murillo-Tovar MA, Villalobos-Pietrini R, de Vizcaya-Ruíz A (2010) Temporal variation of nitro-polycyclic aromatic hydrocarbons in PM10 and PM2.5 collected in Northern Mexico City. Sci Total Environ 408:5429–5438. https://doi.org/10.1016/j.scitotenv.2010.07.065
    Vargas FA, Rojas NY, Pachon JE, Russell AG (2012) PM10 characterization and source apportionment at two residential areas in Bogota. Atmos Pollut Res 3:72–80. https://doi.org/10.5094/APR.2012.006
    Vasconcellos PC, Balasubramanian R, Bruns RE, Sanchez-Ccoyllo O, Andrade MF, Flues M (2007) Water-soluble ions and trace metals in airborne particles over urban areas of the state of São Paulo, Brazil: influences of local sources and long range transport. Water Air Soil Pollut 186:63–73. https://doi.org/10.1007/s11270-007-9465-2
    Vasconcellos PC, Souza DZ, Avila SG et al (2011) Comparative study of the atmospheric chemical composition of three South American cities. Atmos Environ 45:5770–5777. https://doi.org/10.1016/j.atmosenv.2011.07.018
    Vasconcellos PC, Souza DZ, Sanchez-Ccoyllo O, Bustillos JOV, Lee H, Santos FC, Nascimento KH, Araújo MP, Saarnio K, Teinilä K, Hillamo R (2010) Determination of anthropogenic and biogenic compounds on atmospheric aerosol collected in urban, biomass burning and forest areas in São Paulo, Brazil. Sci Total Environ 408:5836–5844. https://doi.org/10.1016/j.scitotenv.2010.08.012
    Winchester L (2015) Harmony and dissonance between human settlements and the environment in Latin America and the Caribbean. United Nations
    Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515. https://doi.org/10.1016/S0146-6380(02)00002-5
    Zhang Z, Khlystov A, Norford LK et al (2017) Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: environmental and health implications. Atmos Environ 161:132–143. https://doi.org/10.1016/j.atmosenv.2017.04.040

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2023