The multinomial logistic regression model for predicting the discharge status after liver transplantation: estimation and diagnostics analysis (2020)
- Authors:
- USP affiliated authors: ORTEGA, EDWIN MOISES MARCOS - ESALQ ; SUZUKI, ADRIANO KAMIMURA - ICMC
- Unidades: ESALQ; ICMC
- DOI: 10.1080/02664763.2019.1706725
- Subjects: ANÁLISE DE REGRESSÃO E DE CORRELAÇÃO; DADOS CATEGORIZADOS; INFERÊNCIA BAYESIANA; TRANSPLANTE DE RIM
- Keywords: diagnostic analysis; multinomial distribution; nominal response
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Applied Statistics
- ISSN: 0266-4763
- Volume/Número/Paginação/Ano: v. 47, n. 12, p. 2159–2177, 2020
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
HASHIMOTO, Elisabeth Mie et al. The multinomial logistic regression model for predicting the discharge status after liver transplantation: estimation and diagnostics analysis. Journal of Applied Statistics, v. 47, n. 12, p. 2159–2177, 2020Tradução . . Disponível em: https://doi.org/10.1080/02664763.2019.1706725. Acesso em: 04 nov. 2024. -
APA
Hashimoto, E. M., Ortega, E. M. M., Cordeiro, G. M., Suzuki, A. K., & Kattan, M. W. (2020). The multinomial logistic regression model for predicting the discharge status after liver transplantation: estimation and diagnostics analysis. Journal of Applied Statistics, 47( 12), 2159–2177. doi:10.1080/02664763.2019.1706725 -
NLM
Hashimoto EM, Ortega EMM, Cordeiro GM, Suzuki AK, Kattan MW. The multinomial logistic regression model for predicting the discharge status after liver transplantation: estimation and diagnostics analysis [Internet]. Journal of Applied Statistics. 2020 ; 47( 12): 2159–2177.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1080/02664763.2019.1706725 -
Vancouver
Hashimoto EM, Ortega EMM, Cordeiro GM, Suzuki AK, Kattan MW. The multinomial logistic regression model for predicting the discharge status after liver transplantation: estimation and diagnostics analysis [Internet]. Journal of Applied Statistics. 2020 ; 47( 12): 2159–2177.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1080/02664763.2019.1706725 - Bivariate odd-log-logistic-Weibull regression model for oral health-related quality of life
- A new extended Birnbaum–Saunders model: properties, regression and applications
- The odd Lomax generator of distributions: properties, estimation and applications
- The bivariate Kumaraswamy Weibull regression model: a complete classical and Bayesian analysis
- Regression models generated by gamma random variables with long-term survivors
- A new flexible gamma generalized model with properties, applications and Bayesian approach
- A new extended Birnbaum-Saunders model with cure fraction: classical and Bayesian approach
- The generalized odd log-logistic-G regression with interval-censored survival data
- The destructive zero-inflated power series cure rate models for carcinogenesis studies
- The odd log-logistic generalized gamma model: properties, applications, classical and bayesian approach
Informações sobre o DOI: 10.1080/02664763.2019.1706725 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
2982194.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas