Segmenting cellular retinal images by optimizing super-pixels, multi-level modularity, and cell boundary representation (2020)
- Authors:
- USP affiliated authors: BATISTA NETO, JOÃO DO ESPÍRITO SANTO - ICMC ; LINARES, OSCAR ALONSO CUADROS - ICMC
- Unidade: ICMC
- DOI: 10.1109/TIP.2019.2936743
- Subjects: PROCESSAMENTO DE IMAGENS; MICROSCOPIA CONFOCAL; RETINA
- Keywords: Image segmentation; modularity optimization; super-pixels
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Piscataway
- Date published: 2020
- Source:
- Título: IEEE Transactions on Image Processing
- ISSN: 1057-7149
- Volume/Número/Paginação/Ano: v. 29, p. 809-818, 2020
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
LINARES, Oscar Alonso Cuadros e HAMANN, Bernd e BATISTA NETO, João do Espírito Santo. Segmenting cellular retinal images by optimizing super-pixels, multi-level modularity, and cell boundary representation. IEEE Transactions on Image Processing, v. 29, p. 809-818, 2020Tradução . . Disponível em: https://doi.org/10.1109/TIP.2019.2936743. Acesso em: 28 dez. 2025. -
APA
Linares, O. A. C., Hamann, B., & Batista Neto, J. do E. S. (2020). Segmenting cellular retinal images by optimizing super-pixels, multi-level modularity, and cell boundary representation. IEEE Transactions on Image Processing, 29, 809-818. doi:10.1109/TIP.2019.2936743 -
NLM
Linares OAC, Hamann B, Batista Neto J do ES. Segmenting cellular retinal images by optimizing super-pixels, multi-level modularity, and cell boundary representation [Internet]. IEEE Transactions on Image Processing. 2020 ; 29 809-818.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1109/TIP.2019.2936743 -
Vancouver
Linares OAC, Hamann B, Batista Neto J do ES. Segmenting cellular retinal images by optimizing super-pixels, multi-level modularity, and cell boundary representation [Internet]. IEEE Transactions on Image Processing. 2020 ; 29 809-818.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1109/TIP.2019.2936743 - Mandible and skull segmentation in cone beam computed tomography using super-voxels and graph clustering
- Introducing a low-cost tool for 3D characterization of pitting corrosion in stainless steel
- Automatic image segmentation based on label propagation
- Identificação de ferrugem por meio de imagens aéreas das áreas cultivadas com cana-de açúcar
- Feature selection with equalized salience measures and its application to segmentation
- An adaptive gradient-based boundary detector for MRI images of the brain
- Mandible and Skull Segmentation in Cone Bean Computed Tomography Data
- Segmentação de imagens de alta dimensão por meio de algorítmos de detecção de comunidades e super pixels
- Image processing operations based on partial differential equations. (cdrom)
- Software livre para testes de métodos de processamento de imagens
Informações sobre o DOI: 10.1109/TIP.2019.2936743 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2980047_final.pdf | |||
| 2980047.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
