Exportar registro bibliográfico


Metrics:

Preparation and characterization of dithiocarbazate Schiff base–loaded poly(lactic acid) nanoparticles and analytical validation for drug quantification (2019)

  • Authors:
  • USP affiliated author: SILVA, DENISE DE OLIVEIRA - IQ
  • School: IQ
  • DOI: 10.1007/s00396-019-04572-9
  • Subjects: NANOPARTÍCULAS; EMULSÕES (FORMAS FARMACÊUTICAS); MATERIAIS NANOESTRUTURADOS
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.1007/s00396-019-04572-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MENEZES, Thacilla Ingrid de; COSTA, Rebeca de Oliveira; SANCHES, Rute Nazaré Fernandes; SILVA, Denise de Oliveira; SANTOS, Rodrigo Luis Silva Ribeiro. Preparation and characterization of dithiocarbazate Schiff base–loaded poly(lactic acid) nanoparticles and analytical validation for drug quantification. Colloid and Polymer Science, New York, v. 297, n. 11-12, p. 1465-1475 : + Supplementary materials ( S1-S6), 2019. Disponível em: < http://dx.doi.org/10.1007/s00396-019-04572-9 > DOI: 10.1007/s00396-019-04572-9.
    • APA

      Menezes, T. I. de, Costa, R. de O., Sanches, R. N. F., Silva, D. de O., & Santos, R. L. S. R. (2019). Preparation and characterization of dithiocarbazate Schiff base–loaded poly(lactic acid) nanoparticles and analytical validation for drug quantification. Colloid and Polymer Science, 297( 11-12), 1465-1475 : + Supplementary materials ( S1-S6). doi:10.1007/s00396-019-04572-9
    • NLM

      Menezes TI de, Costa R de O, Sanches RNF, Silva D de O, Santos RLSR. Preparation and characterization of dithiocarbazate Schiff base–loaded poly(lactic acid) nanoparticles and analytical validation for drug quantification [Internet]. Colloid and Polymer Science. 2019 ; 297( 11-12): 1465-1475 : + Supplementary materials ( S1-S6).Available from: http://dx.doi.org/10.1007/s00396-019-04572-9
    • Vancouver

      Menezes TI de, Costa R de O, Sanches RNF, Silva D de O, Santos RLSR. Preparation and characterization of dithiocarbazate Schiff base–loaded poly(lactic acid) nanoparticles and analytical validation for drug quantification [Internet]. Colloid and Polymer Science. 2019 ; 297( 11-12): 1465-1475 : + Supplementary materials ( S1-S6).Available from: http://dx.doi.org/10.1007/s00396-019-04572-9

    Referências citadas na obra
    Pridgen EM, Langer R, Farokhzad OC (2007) Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine 2:669–680
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20
    Stark WJ (2011) Nanoparticles in biological systems. Angew Chem Int Ed 50:1242–1258
    Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86:215–223
    Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65:259–269
    Mora-Huertas CE, Fessi H, Elaissari a. (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142
    Pinto Reis C, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2:8–21
    Martínez Rivas CJ, Tarhini M, Badri W, Miladi K, Greige-Gerges H, Nazari QA, Galindo Rodríguez SA, Román RÁ, Fessi H, Elaissari A (2017) Nanoprecipitation process: from encapsulation to drug delivery. Int J Pharm 532:66–81
    Zhang Y, Chan HF, Leong KW (2013) Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 65:104–120
    Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913
    Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H (2016) Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev 107:163–175
    James R, Manoukian OS, Kumbar SG (2016) Poly(lactic acid) for delivery of bioactive macromolecules. Adv Drug Deliv Rev 107:277–288
    Muppalaneni SA, Omidian H (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs 02:1000112
    Wang T, Turhan M, Gunasekaran S (2004) Selected properties of pH-sensitive, biodegradable chitosan–poly(vinyl alcohol) hydrogel. Polym Int 53:911–918
    Hua S, Ma H, Li X, Yang H, Wang A (2010) pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. Int J Biol Macromol 46:517–523
    Takasu A, Aoi K, Tsuchiya M, Okada M (1999) New chitin-based polymer hybrids, 4: soil burial degradation behavior of poly(vinyl alcohol)/chitin derivative miscible blends. J Appl Polym Sci 73:1171–1179
    Akbar Ali M, Livingstone SE (1974) Metal complexes of sulphur-nitrogen chelating agents. Coord Chem Rev 13:101–132
    Pavan FR, da S Maia PI, Leite SRA, Deflon VM, Batista AA, Sato DN, Franzblau SG, Leite CQF (2010) Thiosemicarbazones, semicarbazones, dithiocarbazates and hydrazide/hydrazones: anti - mycobacterium tuberculosis activity and cytotoxicity. Eur J Med Chem 45:1898–1905
    Akbar Ali M, Mirza AH, Butcher RJ, Tarafder MT, Keat TB, Ali AM (2002) Biological activity of palladium(II) and platinum(II) complexes of the acetone Schiff bases of S-methyl- and S-benzyldithiocarbazate and the X-ray crystal structure of the [Pd(asme)2] (asme=anionic form of the acetone Schiff base of S-methyldithiocarbazate) complex. J Inorg Biochem 92:141–148
    Ali MA, Mirza AH, Butcher RJ, Crouse KA (2006) The preparation, characterization and biological activity of palladium(II) and platinum(II) complexes of tridentate NNS ligands derived from S-methyl- and S-benzyldithiocarbazates and the X-ray crystal structure of the [Pd(mpasme)Cl] complex. Transit Met Chem 31:79–87
    Nanjundan N, Narayanasamy R, Butcher RJ, Jasinski JP, Velmurugan K, Nandhakumar R, Balakumaran MD, Kalaichelvan PT, Gnanasoundari VG (2017) Synthesis, crystal structure, biomolecular interactions and anticancer properties of Ni(II), Cu(II) and Zn(II) complexes bearing S-allyldithiocarbazate. Inorg Chim Acta 455:283–297
    Maia PIS, Fernandes AGAF, Silva JJN, Andricopulo AD, Lemos SS, Lang ES, Abram U, Deflon VM (2010) Dithiocarbazate complexes with the [M(PPh3)]2+ (M=Pd or Pt) moiety Synthesis, characterization and anti- Tripanosoma cruzi activity. J Inorg Biochem 104:1276–1282
    Abu-Dief AM, Mohamed IMA (2015) A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni-Suef Univ J Basic Appl Sci 4:119–133
    da Silva CM, da Silva DL, Modolo LV, Alves RB, de Resende MA, Martins CVB, de Fátima A (2011) Schiff bases: a short review of their antimicrobial activities. J Adv Res 2:1–8
    Ansari A, Ali A, Asif M, Shamsuzzaman S (2017) Review: biologically active pyrazole derivatives. New J Chem 41:16–41
    Islan GA, Durán M, Cacicedo ML, Nakazato G, Kobayashi RKT, Martinez DST, Castro GR, Durán N (2017) Nanopharmaceuticals as a solution to neglected diseases: is it possible? Acta Trop 170:16–42
    Carneiro ZA, Pedro PI, Sesti-Costa R, Lopes CD, Pereira TA, Milanezi CM, da Silva MAP, Lopez RFV, Silva JS, Deflon VM (2014) In vitro and in vivo trypanocidal activity of H2bdtc-loaded solid lipid nanoparticles. PLoS Negl Trop Dis 8:e2847
    de Sousa GF, Gatto CC, Resck IS, Deflon VM (2011) Synthesis, spectroscopic studies and X-ray crystal structures of new pyrazoline and pyrazole derivatives. J Chem Crystallogr 41:401–408
    Santos RLSR, Costa AR, Menezes TI, Fernades AG (2017) Synthesis and characterization of novel potential trypanocidal metallodrug of ruthenium(II)-dithiocarbazate. J Biol Inorg Chem 22:S106. https://doi.org/10.1007/s00775-017-1475-y
    Costa AR, de Menezes TI, Nascimento RR, dos Anjos PNM, Viana RB, Fernandes AGA, Santos RLSR (2019) Ruthenium(II) dimethylsulfoxide complex with pyrazole/dithiocarbazate ligand. J Therm Anal Calorim 138:1683–1696. https://doi.org/10.1007/s10973-019-08185-w
    Silva JTDP, Silva ACD, Geiss JMT, de Araújo PHH, Becker D, Bracht L, Leimann FV, Bona E, Guerra GP, Gonçalves OH (2017) Analytical validation of an ultraviolet–visible procedure for determining lutein concentration and application to lutein-loaded nanoparticles. Food Chem 230:336–342
    World Health Organization (1992) Validation of analytical procedures used in the examination of pharmaceutical materials (Annex 5), Geneva
    do Rego ECP, Sakuma A, Avila AK, Bizarri CHB, de Oliveira EC, del Castillo F, Lemos IMG, Oliveras LY, Rodrigues LCV, Aguiar PF, da Silva PALopes, Martins PR, Araujo TO, de Azevedo MWD, de Oliveira AGHR, de Oliveira EFR, Hubner MTW, Camargo PW (2016) Orientação sobre validação de métodos analíticos, INMETRO (DOQ-CGCRE-008). Rio de Janeiro
    Ankrum JA, Miranda OR, Ng KS, Sarkar D, Xu C, Karp JM (2014) Engineering cells with intracellular agent-loaded microparticles to control cell phenotype. Nat Protoc 9:233–245
    Finley JH (1961) Spectrophotometric determination of polyvinyl alcohol in paper coatings. Anal Chem 33:1925–1927
    Joshi DP, Lan-Chun-Fung YL, Pritchard JG (1979) Determination of poly(vinyl alcohol) via its complex with boric acid and iodine. Anal Chim Acta 104:153–160
    Ribani M, Botoli CBG, Collins CH, Jardim ICSF, Melo LFC (2004) Validation for chromatographic and electrophoretic methdos. Quim Nova 27:771–780
    Thompson M, Ellison SLR, Fajgelj A, Willetts P, Wood R (1999) Harmonized guidelines for the use of recovery information in analytical measurement. Pure Appl Chem 71:337–348
    Andrade JM, Estévez-Pérez MG (2014) Statistical comparison of the slopes of two regression lines: a tutorial. Anal Chim Acta 838:1–12
    Maharana T, Mohanty B, Negi YS (2010) Preparation of poly(lactic acid) nanoparticles and optimization of the particle size. Int J Green Nanotechnol Phys Chem 2:P100–P109
    Hong JS, Srivastava D, Lee I (2018) Fabrication of poly(lactic acid) nano- and microparticles using a nanomixer via nanoprecipitation or emulsion diffusion. J Appl Polym Sci 135:46199
    Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33:941–951
    Kumar B, Jalodia K, Kumar P, Gautam HK (2017) Recent advances in nanoparticle-mediated drug delivery. J Drug Deliv Sci Technol 41:260–268
    Bhattacharjee S (2016) DLS and zeta potential – what they are and what they are not? J Control Release 235:337–351
    Zhu D, Tao W, Zhang H, Liu G, Wang T, Zhang L, Zeng X, Mei L (2016) Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater 30:144–154
    Szwed M, Santos-Oliveira R (2016) Nanoparticles with therapeutic properties generate various response of human peripheral blood mononuclear cells. J Nanosci Nanotechnol 16:6545–6550
    Thauvin C, Schwarz B, Delie F, Allémann E (2018) Functionalized PLA polymers to control loading and/or release properties of drug-loaded nanoparticles. Int J Pharm 548:771–777
    Derjaguin B, Landau L (1993) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Prog Surf Sci 43:30–59
    Verwey EJW, Overbeek JTG (1948) Theory of the stability of lyophobic colloids. Elsevier Publishing Company, Amsterdam
    Sharma S, Shukla P, Misra A, Mishra PR (2014) Interfacial and colloidal properties of emulsified systems: pharmaceutical and biological perspective. In: Colloid and Interface Science in Pharmaceutical Research and Development. Elsevier, pp 149–172
    Moore TL, Rodriguez-Lorenzo L, Hirsch V, Balog S, Urban D, Jud C, Rothen-Rutishauser B, Lattuada M, Petri-Fink A (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44:6287–6305
    Ge C, Tian J, Zhao Y, Chen C, Zhou R, Chai Z (2015) Towards understanding of nanoparticle–protein corona. Arch Toxicol 89:519–539
    Li F, Zhu A, Song X, Ji L (2014) Novel surfactant for preparation of poly(l-lactic acid) nanoparticles with controllable release profile and cytocompatibility for drug delivery. Colloids Surf B: Biointerfaces 115:377–383
    Musyanovych A, Dausend J, Dass M, Walther P, Mailänder V, Landfester K (2011) Criteria impacting the cellular uptake of nanoparticles: a study emphasizing polymer type and surfactant effects. Acta Biomater 7:4160–4168
    Altmeyer C, Karam TK, Khalil NM, Mainardes RM (2016) Tamoxifen-loaded poly(L-lactide) nanoparticles: development, characterization and in vitro evaluation of cytotoxicity. Mater Sci Eng C 60:135–142
    Roussaki M, Gaitanarou A, Diamanti PC, Vouyiouka S, Papaspyrides C, Kefalas P, Detsi A (2014) Encapsulation of the natural antioxidant aureusidin in biodegradable PLA nanoparticles. Polym Degrad Stab 108:182–187
    Chu KS, Schorzman AN, Finniss MC, Bowerman CJ, Peng L, Luft JC, Madden AJ, Wang AZ, Zamboni WC, DeSimone J (2013) Nanoparticle drug loading as a design parameter to improve docetaxel pharmacokinetics and efficacy. Biomaterials 34:8424–8429
    Essa S, Rabanel JM, Hildgen P (2010) Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(d, l-lactide) (PLA) based nanoparticles. Eur J Pharm Biopharm 75:96–106
    Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY (2010) Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 27:187–197
    Sahoo SK, Panyam J, Prabha S, Labhasetwar V (2002) Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 82:105–114
    Macias CE, Bodugoz-Senturk H, Muratoglu OK (2013) Quantification of PVA hydrogel dissolution in water and bovine serum. Polymer (Guildf) 54:724–729
    Noguchi H, Jyodai H, Matsuzawa S (1997) Formation of poly (vinyl alcohol)–iodine complexes in solution. J Polym Sci B Polym Phys 35:1701–1709
    Zhang Z, Feng SS (2006) The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 27:4025–4033
    Zambaux M (1998) Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 50:31–40
    Da Silva-Buzanello RA, Ferro AC, Bona E, Cardozo-Filho L, de Araújo PHH, Leimann FV, Gonçalves OH (2015) Validation of an ultraviolet–visible (UV–Vis) technique for the quantitative determination of curcumin in poly(l-lactic acid) nanoparticles. Food Chem 172:99–104
    Cao Y, Liu F, Chen Y, Yu T, Lou D, Guo Y, Li P, Wang Z, Ran H (2017) Drug release from core-shell PVA/silk fibroin nanoparticles fabricated by one-step electrospraying. Sci Rep 7:11913
    Lee BK, Yun Y, Park K (2016) PLA micro- and nano-particles. Adv Drug Deliv Rev 107:176–191
    Araujo P (2009) Key aspects of analytical method validation and linearity evaluation. J Chromatogr B Anal Technol Biomed Life Sci 877:2224–2234
    AOAC International (2012) Official methods of analysis of AOAC International. In: AOAC Official Methods of Analysis, in Guidelines for Standard Method Performance Requirements (Appendix F). Gaithersburg, pp 1–17
    Procházková L, Rodríguez-Muñoz Y, Procházka J, Wanner J (2014) Simple spectrophotometric method for determination of polyvinylalcohol in different types of wastewater. Int J Environ Anal Chem 94:399–410

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020