Exportar registro bibliográfico


FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1 (2019)

  • Authors:
  • USP affiliated authors: LUZUM, MATTHEW WILLIAM - IF
  • Unidades: IF
  • DOI: 10.1140/epjc/s10052-019-6904-3
  • Language: Inglês
  • Imprenta:
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.1140/epjc/s10052-019-6904-3 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ABADA, A; LUZUM, Matthew. FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1. European Physical Journal C, Berlin, Springer Verlag, v. 79, p. 474/1-474/161, 2019. Disponível em: < https://doi.org/10.1140/epjc/s10052-019-6904-3 > DOI: 10.1140/epjc/s10052-019-6904-3.
    • APA

      Abada, A., & Luzum, M. (2019). FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1. European Physical Journal C, 79, 474/1-474/161. doi:10.1140/epjc/s10052-019-6904-3
    • NLM

      Abada A, Luzum M. FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1 [Internet]. European Physical Journal C. 2019 ; 79 474/1-474/161.Available from: https://doi.org/10.1140/epjc/s10052-019-6904-3
    • Vancouver

      Abada A, Luzum M. FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1 [Internet]. European Physical Journal C. 2019 ; 79 474/1-474/161.Available from: https://doi.org/10.1140/epjc/s10052-019-6904-3

    Referências citadas na obra
    CERN Council, European Strategy Session of Council, 30 May 2013, CERN-Council-S/106 (2013)
    Future Circular Collider Study Kickoff Meeting, University of Geneva, 12–15 February 2014 (2014). http://indico.cern.ch/e/fcc-kickoff
    E. Todesco, F. Zimmermann (eds.), in Proc. EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider—HE-LHC10, Malta, 14–16 October 2010, CERN-2011-003 (2010). arXiv:1111.7188 [physics.acc-ph]
    J.A. Osborne, C.S. Waaijer, Pre-Feasability Assessment for an 80 km Tunnel Project at CERN, Contribution to the Update of the European Strategy for Particle Physics, No. 165, 27 July 2012. http://indico.cern.ch/event/175067/call-for-abstracts/165/file/1.pdf
    Joint Snowmass-EuCARD/AccNet-HiLumi meeting ‘Frontier Capabilities for Hadron Colliders 2013’ a.k.a. EuCARD VHE-LHC Day, CERN, 21–22 February 2013 (2013). http://indico.cern.ch/event/223094
    A. Blondel, F. Zimmermann, A High Luminosity e $$^+$$ + e $$^-$$ - Collider in the LHC Tunnel to Study the Higgs Boson (2011). arXiv:1112.2518
    EuCARD LEP3 workshop, 18 June 2012; 2nd EuCARD LEP3 workshop 23 October 2012; 3rd EuCARD TLEP3 workshop, 10 January 2013; 4th EuCARD TLEP workshop, 4–5 April 2013 (2012 and 2013)
    The TLEP Design Study Working Group, First Look at the Physics Case of TLEP. JHEP 01, 164 (2014). https://doi.org/10.1007/JHEP01(2014)164 , arXiv:1308.6176 [hep-ex]
    V.L. Ginzburg, L.D. Landau, On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064–1082 (1950)
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957). https://doi.org/10.1103/PhysRev.108.1175
    Planck Collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016). https://doi.org/10.1051/0004-6361/201525830 , arXiv:1502.01589 [astro-ph.CO]
    W. Hu, R. Barkana, A. Gruzinov, Cold and fuzzy dark matter. Phys. Rev. Lett. 85, 1158–1161 (2000). https://doi.org/10.1103/PhysRevLett.85.1158 . arXiv:astro-ph/0003365 [astro-ph]
    K. Griest, A.M. Cieplak, M.J. Lehner, Experimental limits on primordial black hole dark matter from the first 2 yr of Kepler data. Astrophys. J. 786(2), 158 (2014). https://doi.org/10.1088/0004-637X/786/2/158 . arXiv:1307.5798 [astro-ph.CO]
    MACHO, EROS Collaboration, C. Alcock et al., EROS and MACHO combined limits on planetary mass dark matter in the galactic halo. Astrophys. J. 499, L9 (1998). arXiv:astro-ph/9803082 [astro-ph]. Preprint UNSW-AST-AFS1-98, https://doi.org/10.1086/311355
    J. Yoo, J. Chaname, A. Gould, The end of the MACHO era: limits on halo dark matter from stellar halo wide binaries. Astrophys. J. 601, 311–318 (2004). https://doi.org/10.1086/380562 . arXiv:astro-ph/0307437 [astro-ph]
    B. Goddard et al., Physics Opportunities with the FCC-hh Injectors, CERN Yellow Report No. 3, pp. 693–705 (2017). https://doi.org/10.23731/CYRM-2017-003.693 , arXiv:1706.07667 [physics.acc-ph]
    HL-LHC, HE-LHC Working Group Collaboration, P. Azzi et al., Standard Model Physics at the HL-LHC and HE-LHC. arXiv:1902.04070 [hep-ph]. Preprint CERN-LPCC-2018-03
    Physics of the HL-LHC Working Group Collaboration, M. Cepeda et al., Higgs Physics at the HL-LHC and HE-LHC. arXiv:1902.00134 [hep-ph]. Preprint CERN-LPCC-2018-04
    X. Cid Vidal et al., Beyond the Standard Model Physics at the HL-LHC and HE-LHC. arXiv:1812.07831 [hep-ph]. Preprint CERN-LPCC-2018-05
    A. Cerri et al., Opportunities in flavour physics at the HL-LHC and HE-LHC. arXiv:1812.07638 [hep-ph]. Preprint CERN-LPCC-2018-06
    Z. Citron et al., Future physics opportunities for high-density QCD at the LHC with heavy-ion and proton beams, in HL/HE-LHC Workshop: Workshop on the Physics of HL-LHC, and Perspectives at HE-LHC, Geneva, June 18–20, 2018 (2018). arXiv:1812.06772 [hep-ph]
    D. d’Enterria, D. Wojcik, R. Aleksan, Search for resonant s-channel Higgs production at FCC-ee, in 7th, 8th, 10th FCC-ee Physics Workshops, Geneva, June 2014; LPNHE-Paris, Oct. 2014; CERN, Feb. 2016 (2014). https://indico.cern.ch/event/313708/
    M.A. Valdivia Garcia, F. Zimmermann, Optimized monochromatization for direct Higgs production in future circular e $$^{+}$$ + e $$^{-}$$ - colliders, in 8th Int. Particle Accelerator Conf. (IPAC’17), Copenhagen, Denmark, 14–19 May, 2017, pp. 2950–2953 (2017)
    A. Blondel, P. Janot, Future strategies for the discovery and the precise measurement of the Higgs self coupling. arXiv:1809.10041 [hep-ph]
    M.L. Mangano et al., Physics at a 100 TeV pp Collider: Standard Model Processes, CERN Yellow Report No. 3, pp. 1–254 (2017). arXiv:1607.01831 [hep-ph]. Preprint CERN-TH-2016-112, FERMILAB-FN-1021-T. https://doi.org/10.23731/CYRM-2017-003.1
    I. Hinchliffe, A. Kotwal, M.L. Mangano, C. Quigg, L.-T. Wang, Luminosity goals for a 100-TeV pp collider. Int. J. Mod. Phys. A 30(23), 1544002 (2015). https://doi.org/10.1142/S0217751X15440029 . arXiv:1504.06108 [hep-ph]. Preprint CERN-PH-TH-2015-089, FERMILAB-CONF-15-125-E-T, LBNL-176221
    M. Schaumann, Potential performance for Pb–Pb, p–Pb and p–p collisions in a future circular collider. Phys. Rev. ST Accel. Beams 18(9), 091002 (2015). https://doi.org/10.1103/PhysRevSTAB.18.091002 . arXiv:1503.09107 [physics.acc-ph]
    A. Dainese et al., Heavy ions at the Future Circular Collider, CERN Yellow Report No. 3, pp. 635–692 (2017). arXiv:1605.01389 [hep-ph]. Preprint CERN-TH-2016-107. https://doi.org/10.23731/CYRM-2017-003.635
    J. Jowett et al., The 2016 proton–nucleus run of the LHC, Proceedings of IPAC2017, Copenhagen, TUPVA014 (2017). https://doi.org/10.18429/JACoW-IPAC2017-TUPVA014
    J. Haller, A. Hoecker, R. Kogler, K. Mönig, T. Peiffer, J. Stelzer, Update of the global electroweak fit and constraints on two-Higgs-doublet models. arXiv:1803.01853 [hep-ph]
    Gfitter Group Collaboration, M. Baak, J. Cúth, J. Haller, R. Hoecker, A.and Kogler, K. Mönig, M. Schott, J. Stelzer, The global electroweak fit at NNLO and prospects for the HC and ILC, Eur. Phys. J. C 74, 3046 (2014). arXiv:1407.3792 [hep-ph]. Preprint DESY-14-124. https://doi.org/10.1140/epjc/s10052-014-3046-5
    The LEP Electroweak Working Group, the SLD Electroweak Group, the SLD Heavy Flavour Group, and the ALEPH, DELPHI, L3, OPAL and SLD Collaborations, Precision electroweak measurements on the Z resonance. Phys. Rep. 427, 257–454 (2006). arXiv:hep-ex/0509008 [hep-ex]. Preprint SLAC-R-774. https://doi.org/10.1016/j.physrep.2005.12.006
    M. Koratzinos, A. Blondel, E. Gianfelice-Wendt, F. Zimmermann, FCC-ee: energy calibration, in Proceedings of 6th International Particle Accelerator Conference (IPAC 2015): Richmond, May 3–8, 2015, p. TUPTY063 (2015). arXiv:1506.00933 [physics.acc-ph] https://inspirehep.net/record/1374263/files/arXiv:1506.00933.pdf
    P. Janot, Direct measurement of $$\alpha _{QED}(m_{Z}^{2})$$ α QED ( m Z 2 ) at the FCC-ee. JHEP 02, 053 (2016). arXiv:1512.05544 [hep-ph]. https://doi.org/10.1007/JHEP02(2016)053 . https://doi.org/10.1007/JHEP11(2017)164 [Erratum: JHEP11, 164 (2017)]
    P. Janot, Presentation given at the first FCC-ee beam polarization and energy calibration workshop, proceedings in preparation. https://indico.cern.ch/event/669194/contributions/2764992/attachments/1547206/2429244/EnergySpread.pdf (2017)
    C. Jarlskog, Neutrino counting at the Z-peak and right-handed neutrinos. Phys. Lett. B 241, 579–583 (1990). https://doi.org/10.1016/0370-2693(90)91873-A
    G. Barbiellini, X. Berdugo, G. Bonvicini, P. Colas, L. Mirabito et al., Neutrino Counting Preprint CERN-TH-5528-89. http://cds.cern.ch/search?sysno=000112318CER
    OPAL Collaboration, G. Abbiendi et al., Photonic events with missing energy in $$e^+ e^-$$ e + e - collisions at $$\sqrt{s} = 189$$ s = 189 GeV. Eur. Phys. J. C 18, 253–272 (2000). arXiv:hep-ex/0005002 [hep-ex]. Preprint CERN-EP-2000-050. https://doi.org/10.1007/s100520000522
    ALEPH Collaboration, A. Heister et al., Single photon and multiphoton production in $$e^{+}e^{-}$$ e + e - collisions at $$\sqrt{s}$$ s up to 209-GeV. Eur. Phys. J. C 28, 1–13 (2003). Preprint CERN-EP-2002-033. http://link.springer.com/article/10.1140%2Fepjc%2Fs2002-01129-7
    L3 Collaboration, P. Achard et al., Single photon and multiphoton events with missing energy in $$e^{+} e^{-}$$ e + e - collisions at LEP. Phys. Lett. B 587, 16–32 (2004). arXiv:hep-ex/0402002 [hep-ex]. Preprint CERN-EP-2003-068. https://doi.org/10.1016/j.physletb.2004.01.010
    DELPHI Collaboration, J. Abdallah et al., Photon events with missing energy in $$e^+ e^-$$ e + e - collisions at $$\sqrt{s} = 130$$ s = 130 to $$209$$ 209 GeV. Eur. Phys. J. C 38, 395–411 (2005). arXiv:hep-ex/0406019 [hep-ex]. Preprint CERN-EP-2003-093. https://doi.org/10.1140/epjc/s2004-02051-8
    M. Béguin, Poster presented at the 2018 FCC collaboration meeting in Amsterdam (2018). https://indico.cern.ch/event/656491/contributions/2960955/attachments/1628478/2594424/poster_Beguin_FCCweek2018.pdf
    D. d’Enterria, P.Z. Skands (eds.), in Proceedings of High-Precision $$\alpha _s$$ α s Measurements from LHC to FCC-ee (CERN, Geneva, 2015). arXiv:1512.05194 [hep-ph]. http://lss.fnal.gov/archive/2015/conf/fermilab-conf-15-610-t.pdf
    SLD Collaboration, K. Abe et al., Measurement of the branching ratio of the Z0 into heavy quarks. Phys. Rev. D 71, 112004 (2005). arXiv:hep-ex/0503005 [hep-ex]. Preprint SLAC-PUB-9941. https://doi.org/10.1103/PhysRevD.71.112004
    D. d’Enterria, M. Srebre, $$\alpha _s$$ α s and $$\rm V_{cs}$$ V cs determination, and CKM unitarity test, from W decays at NNLO. Phys. Lett. B 763, 465–471 (2016). arXiv:1603.06501 [hep-ph]. https://doi.org/10.1016/j.physletb.2016.10.012
    A. Blondel et al., Standard model theory for the FCC-ee: the Tera-Z, in Mini Workshop on Precision EW and QCD Calculations for the FCC Studies: Methods and Techniques. CERN, Geneva, January 12–13, 2018 (2018). arXiv:1809.01830 [hep-ph]
    Mini workshop: Precision EW and QCD calculations for the FCC studies: methods and techniques. https://indico.cern.ch/event/669224/
    NNPDF Collaboration, R.D. Ball et al., Parton distributions for the LHC Run II. JHEP 04, 040 (2015). arXiv:1410.8849 [hep-ph]. Preprint EDINBURGH-2014-15, IFUM-1034-FT, CERN-PH-TH-2013-253, OUTP-14-11P, CAVENDISH-HEP-14-11. https://doi.org/10.1007/JHEP04(2015)040
    R. Franceschini, G. Panico, A. Pomarol, F. Riva, A. Wulzer, Electroweak precision tests in high-energy diboson processes. JHEP 02, 111 (2018). https://doi.org/10.1007/JHEP02(2018)111 . arXiv:1712.01310 [hep-ph]. Preprint CERN-TH-2017-252, RM3-TH-17-1
    D. de Florian, M. Grazzini, C. Hanga, S. Kallweit, J.M. Lindert, P. Maierhöfer, J. Mazzitelli, D. Rathlev, Differential Higgs boson pair production at next-to-next-to-leading order in QCD. JHEP 09, 151 (2016). https://doi.org/10.1007/JHEP09(2016)151 . arXiv:1606.09519 [hep-ph]. Preprint DESY-16-107, FR-PHENO-2016-007, ICAS-08-16, MITP-16-061, ZU-TH-20-16
    C.Y. Prescott et al., Parity nonconservation in inelastic electron scattering. Phys. Lett. B 77, 347 (1978). https://doi.org/10.1016/0370-2693(78)90722-0 . Preprint SLAC-PUB-2148
    C.Y. Prescott et al., Further measurements of parity nonconservation in inelastic electron scattering. Phys. Lett. B 84, 524 (1979). https://doi.org/10.1016/0370-2693(79)91253-X . Preprint SLAC-PUB-2319
    H1 Collaboration, T. Ahmed et al., First measurement of the charged current cross-section at HERA. Phys. Lett. B 324, 241 (1994). Preprint DESY-94-012. https://doi.org/10.1016/0370-2693(94)90414-6
    H1 Collaboration, A. Aktas et al., A determination of electroweak parameters at HERA. Phys. Lett. B 632, 35 (2006). arXiv:hep-ex/0507080 [hep-ex]. Preprint DESY-05-093. https://doi.org/10.1016/j.physletb.2005.10.035
    H1 and ZEUS Collaborations, H. Abramowicz et al., Combination of measurements of inclusive deep inelastic $${e^{\pm }p}$$ e ± p scattering cross sections and QCD analysis of HERA data. Eur. Phys. J. C 75(12), 580 (2015). arXiv:1506.06042 [hep-ex]. Preprint DESY-15-039. https://doi.org/10.1140/epjc/s10052-015-3710-4
    ZEUS Collaboration, H. Abramowicz et al., Combined QCD and electroweak analysis of HERA data. Phys. Rev. D 93(9), 092002 (2016). arXiv:1603.09628 [hep-ex]. Preprint DESY-16-039. https://doi.org/10.1103/PhysRevD.93.092002
    H1 Collaboration, V. Andreev et al., Determination of electroweak parameters in polarised deep-inelastic scattering at HERA. arXiv:1806.01176 [hep-ex]. Preprint DESY-18-080
    M. Böhm, H. Spiesberger, Radiative corrections to neutral current deep inelastic lepton nucleon scattering at HERA energies. Nucl. Phys. B 294, 1081 (1987). https://doi.org/10.1016/0550-3213(87)90624-9 . Preprint Print-87-0119 (WURZBURG)
    M. Böhm, H. Spiesberger, Radiative corrections to charged current deep inelastic electron-proton scattering at HERA. Nucl. Phys. B 304, 749 (1988). https://doi.org/10.1016/0550-3213(88)90652-9 . Preprint PRINT-88-0076 (WURZBURG)
    DYu. Bardin, C. Burdik, P.C. Khristova, T. Riemann, Electroweak radiative corrections to deep inelastic scattering at HERA, neutral current scattering. Z. Phys. C 42, 679 (1989). https://doi.org/10.1007/BF01557676 . Preprint PHE-88-15
    DYu. Bardin, K.C. Burdik, P.K. Khristova, T. Riemann, Electroweak radiative corrections to deep inelastic scattering at HERA, charged current scattering. Z. Phys. C 44, 149 (1989). https://doi.org/10.1007/BF01548593 . Preprint JINR-E2-89-145
    W. Hollik, D.Yu. Bardin, J. Blümlein, B.A. Kniehl, T. Riemann, H. Spiesberger, Electroweak parameters at HERA: Theoretical aspects, in Workshop on Physics at HERA, Hamburg, October 29–30, 1991, p. 923 (1992)
    A. Sirlin, Radiative corrections in the $$\text{ SU }(2)_{\rm L} \times \text{ U }(1)$$ SU ( 2 ) L × U ( 1 ) theory: a simple renormalization framework. Phys. Rev. D 22, 971 (1980). https://doi.org/10.1103/PhysRevD.22.971 . Preprint PRINT-80-0267 (IAS,PRINCETON)
    Particle Data Group Collaboration, C. Patrignani et al., Review of particle physics. Chin. Phys. C 40(10), 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001
    M. Klein, T. Riemann, Electroweak interactions probing the nucleon structure. Z. Phys. C 24, 151 (1984). https://doi.org/10.1007/BF01571719 . Preprint PHE 83-08
    D0 Collaboration, V.M. Abazov et al., Measurement of $$\sin ^2\theta _{\rm eff}^{\ell }$$ sin 2 θ eff ℓ and $$Z$$ Z -light quark couplings using the forward–backward charge asymmetry in $$p\bar{p} \rightarrow Z/\gamma ^{*} \rightarrow e^{+}e^{-}$$ p p ¯ → Z / γ ∗ → e + e - events with $${\cal{L}}=5.0$$ L = 5.0 fb $$^{-1}$$ - 1 at $$\sqrt{s}=1.96$$ s = 1.96 TeV. Phys. Rev. D 84, 012007 (2011). arXiv:1104.4590 [hep-ex]. Preprint FERMILAB-PUB-11-190-E. https://doi.org/10.1103/PhysRevD.84.012007
    H. Spiesberger, Precision electroweak tests at HERA. Adv. Ser. Direct. High Energy Phys. 14, 626 (1995). https://doi.org/10.1142/9789814503662_0016 . Preprint BI-TP-93-03
    J. Blümlein, M. Klein, T. Riemann, Testing the electroweak Standard Model at HERA, in Physics at future accelerators, Proceedings, 10th Warsaw symposium on elementary particle physics, Kazimierz, May 24–30, 1987, p. 39 (1987)
    LHeC Study Group Collaboration, J.L. Abelleira Fernandez et al., A large hadron electron collider at CERN: report on the physics and design concepts for machine and detector. J. Phys. G 39, 075001 (2012). arXiv:1206.2913 [physics.acc-ph]. Preprint SLAC-R-999, CERN-OPEN-2012-015, LHEC-NOTE-2012-001-GEN. https://doi.org/10.1088/0954-3899/39/7/075001
    Particle Data Group Collaboration, M. Tanabashi et al., Review of particle physics. Phys. Rev. D 98(3), 030001 (2018). https://doi.org/10.1103/PhysRevD.98.030001
    CDF Collaboration, T.A. Aaltonen et al., Precise measurement of the W-boson mass with the collider detector at Fermilab. Phys. Rev. D 89(7), 072003 (2014). arXiv:1311.0894 [hep-ex]. Preprint FERMILAB-PUB-13-515-E. https://doi.org/10.1103/PhysRevD.89.072003
    ATLAS Collaboration, M. Aaboud et al., Measurement of the $$W$$ W -boson mass in $$pp$$ pp collisions at $$\sqrt{s}=7$$ s = 7 TeV with the ATLAS detector. Eur. Phys. J. C 78(2), 110 (2018). arXiv:1701.07240 [hep-ex]. Preprint CERN-EP-2016-305. https://doi.org/10.1140/epjc/s10052-017-5475-4
    A. Hoecker, private communication (2018). https://indico.cern.ch/event/716380/contributions/2944841/attachments/1660046/2660284/epfaculty-hoecker-1jun2018.pdf
    P. Azzi, C. Bernet, C. Botta, P. Janot, M. Klute, P. Lenzi, L. Malgeri, M. Zanetti, Prospective studies for LEP3 with the CMS detector. arXiv:1208.1662 [hep-ex]. Preprint CMS-NOTE-2012-003
    M.E. Peskin, Comparison of LHC and ILC capabilities for Higgs boson coupling measurements. arXiv:1207.2516 [hep-ph]. Preprint SLAC-PUB-15178
    T. Barklow, K. Fujii, S. Jung, R. Karl, J. List, T. Ogawa, M.E. Peskin, J. Tian, Improved formalism for precision Higgs coupling fits. Phys. Rev. D 97(5), 053003 (2018). https://doi.org/10.1103/PhysRevD.97.053003 . arXiv:1708.08912 [hep-ph].Preprint DESY-17-120, KEK-PREPRINT-2017-22, SLAC-PUB-17129, DESY-17-120—KEK-PREPRINT-2017-22—SLAC-PUB-17129
    H. Abramowicz et al., Higgs physics at the CLIC electron-positron linear collider. Eur. Phys. J. C 77(7), 475 (2017). https://doi.org/10.1140/epjc/s10052-017-4968-5 . arXiv:1608.07538 [hep-ex]. Preprint CLICDP-PUB-2016-001
    M. Ruan, private communication (2017). http://ias.ust.hk/program/shared_doc/2017/201701hep/HEP_20170124_Manqi_Ruan.pdf
    ATLAS Collaboration, M. Aaboud et al., Observation of Higgs boson production in association with a top quark pair at the LHC with the ATLAS detector. arXiv:1806.00425 [hep-ex]. Preprint CERN-EP-2018-138, CERN-EP-2018-138
    CMS Collaboration, A.M. Sirunyan et al., Observation of $$\rm t\overline{t}$$ t t ¯ H production. Phys. Rev. Lett. 120(23), 231801 (2018). arXiv:1804.02610 [hep-ex]. Preprint CMS-HIG-17-035, CERN-EP-2018-064, CMS-HIG-17-035, CERN-EP-2018-064. https://doi.org/10.1103/PhysRevLett.120.231801 , https://doi.org/10.1130/PhysRevLett.120.231801
    S. Jadach, R.A. Kycia, Lineshape of the Higgs boson in future lepton colliders. Phys. Lett. B 755, 58–63 (2016). https://doi.org/10.1016/j.physletb.2016.01.065 . arXiv:1509.02406 [hep-ph]
    M.A. Valdivia Garcia, A. Faus-Golfe, F. Zimmermann, Towards a monochromatization scheme for direct Higgs production at FCC-ee. Preprint CERN-ACC-2016-0077. https://cds.cern.ch/record/2159683
    D. d’Enterria, Higgs physics at the future circular Collider. PoS ICHEP 2016, 434 (2017). https://doi.org/10.22323/1.282.0434 . arXiv:1701.02663 [hep-ex]
    J. Brod, U. Haisch, J. Zupan, Constraints on CP-violating Higgs couplings to the third generation. JHEP 11, 180 (2013). https://doi.org/10.1007/JHEP11(2013)180 . arXiv:1310.1385 [hep-ph]. Preprint NSF-KITP-13-229
    ATLAS Collaboration, G. Aad et al., Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector. Eur. Phys. J. C 75(10), 476 (2015). arXiv:1506.05669 [hep-ex]. Preprint CERN-PH-EP-2015-114. https://doi.org/10.1140/epjc/s10052-015-3685-1 . https://doi.org/10.1140/epjc/s10052-016-3934-y [Erratum: Eur. Phys. J. C 76(3), 152 (2016)]
    CMS Collaboration, V. Khachatryan et al., Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV. Phys. Rev. D 92(1), 012004 (2015). arXiv:1411.3441 [hep-ex]. Preprint CMS-HIG-14-018, CERN-PH-EP-2014-265. https://doi.org/10.1103/PhysRevD.92.012004
    R. Contino et al., Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies, CERN Yellow Report No. 3, pp. 255–440 (2017). arXiv:1606.09408 [hep-ph]. Preprint CERN-TH-2016-113. https://doi.org/10.23731/CYRM-2017-003.255
    M. Selvaggi, Higgs measurements at FCC-hh, CERN-ACC-2018-0045. CERN, Geneva (2018). Preprint CERN-ACC-2018-0045. https://cds.cern.ch/record/2642471 , Placeholder draft
    M.L. Mangano, T. Plehn, P. Reimitz, T. Schell, H.-S. Shao, Measuring the top Yukawa coupling at 100 TeV. J. Phys. G 43(3), 035001 (2016). https://doi.org/10.1088/0954-3899/43/3/035001 . arXiv:1507.08169 [hep-ph]
    U. Klein, FCC-eh as a Higgs Facility (2018). https://indico.cern.ch/event/656491/contributions/2947252/
    T. Han, B. Mellado, Higgs boson searches and the H b anti-b coupling at the LHeC. Phys. Rev. D 82, 016009 (2010). https://doi.org/10.1103/PhysRevD.82.016009 . arXiv:0909.2460 [hep-ph]
    M. Tanaka, Study of the Higgs Measurements at the LHeC, Bachelor Thesis. Tokyo Institute of Technology (2014) (in Japanese)
    E. Kay, Higgs Studies at a High Luminosity LHeC, Master Thesis. Liverpool University (2014)
    U. Klein, Higgs heavy flavour studies using jet probabilities (2015). https://indico.cern.ch/event/356714/contributions/844946/
    D. Hampson, I. Harris, Finding Higgs to Charm decays in ep, Master and Bachelor Theses. Liverpool University (2016–2017)
    C. Englert, R. Kogler, H. Schulz, M. Spannowsky, Higgs coupling measurements at the LHC. Eur. Phys. J. C 76(7), 393 (2016). https://doi.org/10.1140/epjc/s10052-016-4227-1 . arXiv:1511.05170 [hep-ph]. Preprint IPPP-15-66, DCPT-15-132
    B. Coleppa, M. Kumar, S. Kumar, B. Mellado, Measuring CP nature of top-Higgs couplings at the future Large Hadron electron collider. Phys. Lett. B 770, 335–341 (2017). https://doi.org/10.1016/j.physletb.2017.05.006 . arXiv:1702.03426 [hep-ph]
    Y.-L. Tang, C. Zhang, S.-H. Zhu, Invisible Higgs decay at the LHeC. Phys. Rev. D 94(1), 011702 (2016). https://doi.org/10.1103/PhysRevD.94.011702 . arXiv:1508.01095 [hep-ph]
    H. Georgi, M. Machacek, Doubly charged Higgs bosons. Nucl. Phys. B 262, 463–477 (1985). https://doi.org/10.1016/0550-3213(85)90325-6 . Preprint HUTP-85/A051
    S. Liu, Y.-L. Tang, C. Zhang, S.-H. Zhu, Exotic Higgs decay $$h\rightarrow \phi \phi \rightarrow 4b$$ h → ϕ ϕ → 4 b at the LHeC. Eur. Phys. J. C 77(7), 457 (2017). https://doi.org/10.1140/epjc/s10052-017-5012-5 . arXiv:1608.08458 [hep-ph]
    U. Klein, M. O’Keefe, Study of the Higgs to 4b decay in ep scattering, Master Thesis. Liverpool University (2017)
    G. Azuelos, H. Sun, K. Wang, Search for singly charged Higgs bosons in vector-boson scattering at ep colliders. Phys. Rev. D 97(11), 116005 (2018). https://doi.org/10.1103/PhysRevD.97.116005 . arXiv:1712.07505 [hep-ph]. Preprint DESY-17-150
    D. d’Enterria, P.Z. Skands (eds.), in Proceedings, Parton Radiation and Fragmentation from LHC to FCC-ee (2017). arXiv:1702.01329 [hep-ph]
    J.R. Christiansen, T. Sjöstrand, Color reconnection at future $$\text{ e }^{+}$$ e + $$\text{ e }^{-}$$ e - colliders. Eur. Phys. J. C 75(9), 441 (2015). https://doi.org/10.1140/epjc/s10052-015-3674-4 . arXiv:1506.09085 [hep-ph]. Preprint LU-TP-15-25, MCNET-15-15
    D. d’Enterria, $$\alpha _s$$ α s status and perspectives (2018), in 26th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2018) Port Island, Kobe, Japan, April 16–20, 2018 (2018). arXiv:1806.06156 [hep-ex]
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, EERAD3: event shapes and jet rates in electron–positron annihilation at order $$\alpha _s^3$$ α s 3 . Comput. Phys. Commun. 185, 3331 (2014). arXiv:1402.4140 [hep-ph]. Preprint ZU-TH-05-14, IPPP-14-15, MPP-2014-23. https://doi.org/10.1016/j.cpc.2014.07.024 . http://eerad3.hepforge.org . http://eerad3.hepforge.org
    S. Weinzierl, Jet algorithms in electron–positron annihilation: Perturbative higher order predictions. Eur. Phys. J. C 71, 1565 (2011). arXiv:1011.6247 [hep-ph]. https://doi.org/10.1140/epjc/s10052-011-1717-z . https://doi.org/10.1140/epjc/s10052-011-1565-x [Erratum: Eur. Phys. J. C 71, 1717 (2011)]
    V. Del Duca, C. Duhr, A. Kardos, G. Somogyi, Z. Trocsanyi, Three-jet production in electron-positron collisions at next-to-next-to-leading order accuracy. Phys. Rev. Lett. 117(15), 152004 (2016). https://doi.org/10.1103/PhysRevLett.117.152004 . arXiv:1603.08927 [hep-ph]
    A. Banfi, H. McAslan, P.F. Monni, G. Zanderighi, A general method for the resummation of event-shape distributions in $$e^{+} e$$ e + e annihilation. JHEP 05, 102 (2015). https://doi.org/10.1007/JHEP05(2015)102 . arXiv:1412.2126 [hep-ph]. Preprint OUTP-14-18P
    OPAL Collaboration, N. Fischer, S. Gieseke, S. Kluth, S. Platzer, P. Skands, Measurement of observables sensitive to coherence effects in hadronic Z decays with the OPAL detector at LEP. Eur. Phys. J. C 75(12), 571 (2015). arXiv:1505.01636 [hep-ex]. Preprint COEPP-MN-15-2. https://doi.org/10.1140/epjc/s10052-015-3766-1
    A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, G. Heinrich, NNLO corrections to event shapes in e+ e $$-$$ - annihilation. JHEP 12, 094 (2007). https://doi.org/10.1088/1126-6708/2007/12/094 . arXiv:0711.4711 [hep-ph]. Preprint ZU-TH-27-07, IPPP-07-90, EDINBURGH-2007-47
    V. Del Duca, C. Duhr, A. Kardos, G. Somogyi, Z. Ször, Z. Trócsányi, Z. Tulipánt, Jet production in the CoLoRFulNNLO method: event shapes in electron–positron collisions. Phys. Rev. D 94(7), 074019 (2016). https://doi.org/10.1103/PhysRevD.94.074019 . arXiv:1606.03453 [hep-ph]. Preprint CERN-TH-2016-138, CP3-16-29, NSF-KITP-16-084
    R. Abbate, M. Fickinger, A.H. Hoang, V. Mateu, I.W. Stewart, Thrust at $$\text{ N }^3$$ N 3 LL with power corrections and a precision global fit for alphas (mZ). Phys. Rev. D 83, 074021 (2011). https://doi.org/10.1103/PhysRevD.83.074021 . arXiv:1006.3080 [hep-ph]. Preprint MIT-CTP-4101, MPP-2010-7
    A.H. Hoang, D.W. Kolodrubetz, V. Mateu, I.W. Stewart, $$C$$ C -parameter distribution at N $$^3$$ 3 LL’ including power corrections. Phys. Rev. D 91(9), 094017 (2015). https://doi.org/10.1103/PhysRevD.91.094017 . arXiv:1411.6633 [hep-ph]. Preprint UWTHPH-2014-07, MIT-CTP-4596, LPN14-123
    G. Bell, A. Hornig, C. Lee, J. Talbert, $$e^+ e^-$$ e + e - angularity distributions at NNLL $$^\prime $$ ′ accuracy. arXiv:1808.07867 [hep-ph]. Preprint SI-HEP-2018-19, LA-UR-18-24071, DESY-18-083
    Z. Nagy, D.E. Soper, Effects of subleading color in a parton shower. JHEP 07, 119 (2015). https://doi.org/10.1007/JHEP07(2015)119 . arXiv:1501.00778 [hep-ph]. Preprint DESY-14-250
    H.T. Li, P. Skands, A framework for second-order parton showers. Phys. Lett. B 771, 59–66 (2017). https://doi.org/10.1016/j.physletb.2017.05.011 . arXiv:1611.00013 [hep-ph]. Preprint COEPP-MN-16-25, COEPP-MN-16-26
    S. Hoche, F. Krauss, S. Prestel, Implementing NLO DGLAP evolution in parton showers. JHEP 10, 093 (2017). https://doi.org/10.1007/JHEP10(2017)093 . arXiv:1705.00982 [hep-ph]. Preprint SLAC-PUB-16965, FERMILAB-PUB-17-134-T, IPPP-17-34, DCPT-17-68, MCNET-17-06
    S. Hoeche, D. Reichelt, F. Siegert, Momentum conservation and unitarity in parton showers and NLL resummation. arXiv:1711.03497 [hep-ph]. Preprint SLAC-PUB-17173, MCNET-17-20
    P. Gras, S. Höche, D. Kar, A. Larkoski, L. Lönnblad, S. Plätzer, A. Siódmok, P. Skands, G. Soyez, J. Thaler, Systematics of quark/gluon tagging. JHEP 07, 091 (2017). https://doi.org/10.1007/JHEP07(2017)091 . arXiv:1704.03878 [hep-ph]. Preprint MIT-CTP-4885, COEPP-MN-17-2, MCNET-17-04
    T. Sjostrand, S. Ask, J.R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C.O. Rasmussen, P.Z. Skands, An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177 (2015). https://doi.org/10.1016/j.cpc.2015.01.024 . arXiv:1410.3012 [hep-ph]. Preprint LU-TP-14-36, MCNET-14-22, CERN-PH-TH-2014-190, FERMILAB-PUB-14-316-CD, DESY-14-178, SLAC-PUB-16122
    M. Bahr et al., Herwig++ Physics and Manual. Eur. Phys. J. C 58, 639–707 (2008). https://doi.org/10.1140/epjc/s10052-008-0798-9 . arXiv:0803.0883 [hep-ph]. Preprint CERN-PH-TH-2008-038, CAVENDISH-HEP-08-03, KA-TP-05-2008, DCPT-08-22, IPPP-08-11, CP3-08-05
    J. Bellm et al., Herwig++ 2.7 Release Note. arXiv:1310.6877 [hep-ph]. Preprint IPPP-13-88, MCNET-13-15, DCPT-13-176, DESY-13-186, KA-TP-31-2013, ZU-TH-23-13
    T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, J. Winter, Event generation with SHERPA 1.1. JHEP 02, 007 (2009). https://doi.org/10.1088/1126-6708/2009/02/007 . arXiv:0811.4622 [hep-ph]. Preprint FERMILAB-PUB-08-477-T, SLAC-PUB-13420, ZU-TH-17-08, DCPT-08-138, IPPP-08-69, EDINBURGH-2008-30, MCNET-08-14
    N. Fischer, S. Prestel, M. Ritzmann, P. Skands, Vincia for Hadron Colliders. Eur. Phys. J. C 76(11), 589 (2016). https://doi.org/10.1140/epjc/s10052-016-4429-6 . arXiv:1605.06142 [hep-ph], Preprint COEPP-MN-16-11, MCNET-16-13, SLAC-PUB-16529, NIKHEF-2016-020
    Z. Nagy, D.E. Soper, A parton shower based on factorization of the quantum density matrix. JHEP 06, 097 (2014). https://doi.org/10.1007/JHEP06(2014)097 . arXiv:1401.6364 [hep-ph], Preprint DESY-13-241
    C. Flensburg, G. Gustafson, L. Lonnblad, Inclusive and exclusive observables from dipoles in high energy collisions. JHEP 08, 103 (2011). https://doi.org/10.1007/JHEP08(2011)103 . arXiv:1103.4321 [hep-ph], Preprint LU-TP-11-13, CERN-PH-TH-2011-058, MCNET-11-08
    S. Höche, S. Prestel, The midpoint between dipole and parton showers. Eur. Phys. J. C 75(9), 461 (2015). https://doi.org/10.1140/epjc/s10052-015-3684-2 . arXiv:1506.05057 [hep-ph], Preprint SLAC-PUB-16304, MCNET-15-13
    A.J. Larkoski, J. Thaler, W.J. Waalewijn, Gaining (mutual) information about quark/gluon discrimination. JHEP 11, 129 (2014). https://doi.org/10.1007/JHEP11(2014)129 . arXiv:1408.3122 [hep-ph], Preprint MIT–CTP-4572, NIKHEF-2014-026
    J.R. Andersen et al., Les Houches 2015: physics at TeV Colliders Standard Model Working Group Report in 9th Les Houches Workshop on Physics at TeV Colliders (PhysTeV 2015) Les Houches, France, June 1–19, 2015 (2016). arXiv:1605.04692 [hep-ph], http://lss.fnal.gov/archive/2016/conf/fermilab-conf-16-175-ppd-t.pdf
    T. Sjostrand, V.A. Khoze, On color rearrangement in hadronic W+ W $$-$$ - events. Z. Phys. C 62, 281–310 (1994). https://doi.org/10.1007/BF01560244 . arXiv:hep-ph/9310242 [hep-ph], Preprint CERN-TH-7011-93, DTP-93-74
    The LEP Electroweak Working Group and the ALEPH, DELPHI, L3, OPAL Collaborations, Electroweak measurements in electron–positron collisions at W-boson-pair energies at LEP. Phys. Rep. 532, 119–244 (2013). arXiv:1302.3415 [hep-ex], Preprint CERN-PH-EP-2013-022, https://doi.org/10.1016/j.physrep.2013.07.004
    S. Argyropoulos, T. Sjöstrand, Effects of color reconnection on $$t\bar{t}$$ t t ¯ final states at the LHC. JHEP 11, 043 (2014). https://doi.org/10.1007/JHEP11(2014)043 . arXiv:1407.6653 [hep-ph], Preprint LU-TP-14-23, DESY-14-134, MCNET-14-15
    J.R. Christiansen, P.Z. Skands, String formation beyond leading colour. JHEP 08, 003 (2015). https://doi.org/10.1007/JHEP08(2015)003 . arXiv:1505.01681 [hep-ph], Preprint COEPP-MN-15-1, LU-TP-15-16, MCNET-15-09
    C. Bierlich, G. Gustafson, L. Lönnblad, A shoving model for collectivity in hadronic collisions. arXiv:1612.05132 [hep-ph], Preprint MCNET-16-48, LU-TP-16-64
    A. Karneyeu, L. Mijovic, S. Prestel, P.Z. Skands, MCPLOTS: a particle physics resource based on volunteer computing. Eur. Phys. J. C 74, 2714 (2014). https://doi.org/10.1140/epjc/s10052-014-2714-9 . arXiv:1306.3436 [hep-ph], Preprint CERN-PH-TH-2013-105, DESY-13-104, LU-TP-13-23, NSF-KITP-13-116
    CMS Collaboration, V. Khachatryan et al., Observation of long-range near-side angular correlations in proton–proton collisions at the LHC. JHEP 09, 091 (2010). arXiv:1009.4122 [hep-ex], Preprint CMS-QCD-10-002, CERN-PH-EP-2010-031, https://doi.org/10.1007/JHEP09(2010)091
    ALICE Collaboration, J. Adam et al., Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions. Nat. Phys. 13, 535–539 (2017). arXiv:1606.07424 [nucl-ex], Preprint CERN-EP-2016-153, https://doi.org/10.1038/nphys4111
    DELPHI Collaboration, P. Abreu et al., Strange baryon production in Z hadronic decays. Z. Phys. C 67, 543–554 (1995). Preprint CERN-PPE-95-039, CERN-PPE-95-39, https://doi.org/10.1007/BF01553980
    OPAL Collaboration, G. Alexander et al., Strange baryon production in hadronic Z0 decays. Z. Phys. C 73, 569–586 (1997). Preprint CERN-PPE-96-099, CERN-PPE-96-99, https://doi.org/10.1007/s002880050349
    OPAL Collaboration, R. Akers et al., Inclusive strange vector and tensor meson production in hadronic Z0 decays. Z. Phys. C 68, 1–12 (1995). Preprint CERN-PPE-95-027, CERN-PPE-95-27, https://doi.org/10.1007/BF01579799
    OPAL Collaboration, G. Abbiendi et al., A study of parton fragmentation in hadronic Z0 decays using Lambda anti-Lambda correlations. Eur. Phys. J. C 13, 185–195 (2000). arXiv:hep-ex/9808031 [hep-ex], Preprint CERN-EP-98-114, https://doi.org/10.1007/s100520000207 , https://doi.org/10.1007/s100520050685
    ATLAS Collaboration, M. Aaboud et al., Jet energy scale measurements and their systematic uncertainties in proton–proton collisions at $$\sqrt{s} = 13$$ s = 13 TeV with the ATLAS detector. Phys. Rev. D 96(7), 072002 (2017). arXiv:1703.09665 [hep-ex], Preprint CERN-EP-2017-038, https://doi.org/10.1103/PhysRevD.96.072002
    CMS Collaboration, V. Khachatryan et al., Jet energy scale and resolution in the CMS experiment in pp collisions at 8 TeV. JINST 12(02), P02014 (2017). arXiv:1607.03663 [hep-ex], Preprint CMS-JME-13-004, CERN-PH-EP-2015-305, https://doi.org/10.1088/1748-0221/12/02/P02014
    M. Klein, Future deep inelastic scattering with the LHeC. arXiv:1802.04317 [hep-ph], http://inspirehep.net/record/1654806/files/1802.04317.pdf
    S. Alekhin et al., HERAFitter. Eur. Phys. J. C 75(7), 304 (2015). https://doi.org/10.1140/epjc/s10052-015-3480-z . arXiv:1410.4412 [hep-ph], Preprint DESY-14-188, DESY-REPORT-14-188, FERMILAB-PUB-14-603-CMS
    ZEUS, H1 Collaboration, F.D. Aaron et al., Combined measurement and QCD analysis of the inclusive e+ $$-$$ - p scattering cross sections at HERA. JHEP 01, 109 (2010). arXiv:0911.0884 [hep-ex], Preprint DESY-09-158, https://doi.org/10.1007/JHEP01(2010)109
    H1 Collaboration, F.D. Aaron et al., A precision measurement of the inclusive $$ep$$ ep scattering cross section at HERA. Eur. Phys. J. C 64, 561 (2009). arXiv:0904.3513 [hep-ex], Preprint DESY-09-005, DESY09-005, https://doi.org/10.1140/epjc/s10052-009-1169-x
    S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump, C.P. Yuan, New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D 93(3), 033006 (2016). https://doi.org/10.1103/PhysRevD.93.033006 . arXiv:1506.07443 [hep-ph]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75(5), 204 (2015). https://doi.org/10.1140/epjc/s10052-015-3397-6 . arXiv:1412.3989 [hep-ph], Preprint LCTS-2014-47, IPPP-14-97, DCPT-14-194
    ATLAS Collaboration, M. Aaboud et al., Precision measurement and interpretation of inclusive $$W^+$$ W + , $$W^-$$ W - and $$Z/\gamma ^*$$ Z / γ ∗ production cross sections with the ATLAS detector. Eur. Phys. J. C 77(6), 367 (2017). arXiv:1612.03016 [hep-ex], Preprint CERN-EP-2016-272, https://doi.org/10.1140/epjc/s10052-017-4911-9
    R.D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J.I. Latorre, J. Rojo, M. Ubiali, A first unbiased global NLO determination of parton distributions and their uncertainties. Nucl. Phys. B 838, 136–206 (2010). https://doi.org/10.1016/j.nuclphysb.2010.05.008 . arXiv:1002.4407 [hep-ph], Preprint EDINBURGH-2010-05, IFUM-952-FT, FR-PHENO-2010-014, CP3-10-08
    J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G 43, 023001 (2016). https://doi.org/10.1088/0954-3899/43/2/023001 . arXiv:1510.03865 [hep-ph], Preprint OUTP-15-17P, SMU-HEP-15-12, TIF-UNIMI-2015-14, LCTS-2015-27, CERN-PH-TH-2015-249
    I.I. Balitsky, L.N. Lipatov, The Pomeranchuk singularity in quantum chromodynamics. Sov. J. Nucl. Phys. 28, 822–829 (1978). [Yad. Fiz. 28, 1597 (1978)]
    E.A. Kuraev, L.N. Lipatov, V.S. Fadin, The Pomeranchuk singularity in nonabelian gauge theories. Sov. Phys. JETP 45, 199–204 (1977). [Zh. Eksp. Teor. Fiz. 72, 377 (1977)]
    M. Ciafaloni, D. Colferai, G.P. Salam, A.M. Stasto, Renormalization group improved small x Green’s function. Phys. Rev. D 68, 114003 (2003). https://doi.org/10.1103/PhysRevD.68.114003 . arXiv:hep-ph/0307188 [hep-ph], Preprint DESY-03-060, DFF-404-05-03, LPTHE-03-20
    G. Altarelli, R.D. Ball, S. Forte, Resummation of singlet parton evolution at small x. Nucl. Phys. B 575, 313–329 (2000). https://doi.org/10.1016/S0550-3213(00)00032-8 . arXiv:hep-ph/9911273 [hep-ph], Preprint CERN-TH-99-317, RM3-TH-99-11, EDINBURGH-99-18
    R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli, Parton distributions with small-x resummation: evidence for BFKL dynamics in HERA data. Eur. Phys. J. C 78(4), 321 (2018). https://doi.org/10.1140/epjc/s10052-018-5774-4 . arXiv:1710.05935 [hep-ph], Preprint EDINBURGH-2017-15, NIKHEF-2017-027, OUTP-17-12P
    N. Armesto, A.H. Rezaeian, Exclusive vector meson production at high energies and gluon saturation. Phys. Rev. D 90(5), 054003 (2014). https://doi.org/10.1103/PhysRevD.90.054003 . arXiv:1402.4831 [hep-ph]
    J.C. Collins, Proof of factorization for diffractive hard scattering. Phys. Rev. D 57, 3051–3056 (1998). arXiv:hep-ph/9709499 [hep-ph], Preprint PSU-TH-189, https://doi.org/10.1103/PhysRevD.61.019902 , https://doi.org/10.1103/PhysRevD.57.3051 , [Erratum: Phys. Rev. D 61, 019902 (2000)]
    ATLAS Collaboration, M. Aaboud et al., Measurement of the top quark mass in the $$t\bar{t}\rightarrow $$ t t ¯ → lepton+jets channel from $$\sqrt{s}=8$$ s = 8 TeV ATLAS data and combination with previous results. arXiv:1810.01772 [hep-ex], Preprint CERN Preprint ID: CERN-EP-2018-238
    CMS Collaboration, V. Khachatryan et al., Measurement of the top quark mass using proton–proton data at $${\sqrt{s}} = 7$$ s = 7 and 8 TeV. Phys. Rev. D 93(7), 072004 (2016). arXiv:1509.04044 [hep-ex], Preprint CMS-TOP-14-022, CERN-PH-EP-2015-234, https://doi.org/10.1103/PhysRevD.93.072004
    G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Strumia, Higgs mass and vacuum stability in the Standard Model at NNLO. JHEP 08, 098 (2012). https://doi.org/10.1007/JHEP08(2012)098 . arXiv:1205.6497 [hep-ph], Preprint CERN-PH-TH-2012-134, RM3-TH-12-9
    F. Simon, Impact of theory uncertainties on the precision of the top quark mass in a threshold scan at future e+e $$-$$ - colliders. PoS ICHEP 2016, 872 (2017). https://doi.org/10.22323/1.282.0872 . arXiv:1611.03399 [hep-ex], Preprint MPP-2016-325
    P. Janot, Top-quark electroweak couplings at the FCC-ee. JHEP 04, 182 (2015). https://doi.org/10.1007/JHEP04(2015)182 . arXiv:1503.01325 [hep-ph]
    S. De Curtis, M. Redi, A. Tesi, The 4D composite Higgs. JHEP 04, 042 (2012). https://doi.org/10.1007/JHEP04(2012)042 . arXiv:1110.1613 [hep-ph]
    CLICdp Collaboration, H. Abramowicz et al., Top-quark physics at the CLIC electron–positron linear collider. arXiv:1807.02441 [hep-ex], Preprint CLICdp-Pub-2018-003, CLICDP-PUB-2018-003
    D. Barducci et al., Interpreting top-quark LHC measurements in the standard-model effective field theory. arXiv:1802.07237 [hep-ph], Preprint CERN-LPCC-2018-01
    O. Gedalia, G. Isidori, F. Maltoni, G. Perez, M. Selvaggi, Y. Soreq, Top B physics at the LHC. Phys. Rev. Lett. 110(23), 232002 (2013). https://doi.org/10.1103/PhysRevLett.110.232002 . arXiv:1212.4611 [hep-ph], Preprint CERN-PH-TH-2012-352, CP3-12-56
    M. Mangano, T. Melia, Rare exclusive hadronic W decays in a $$t\bar{t}$$ t t ¯ environment. Eur. Phys. J. C 75(6), 258 (2015). https://doi.org/10.1140/epjc/s10052-015-3482-x . arXiv:1410.7475 [hep-ph]
    J.A. Aguilar-Saavedra, B. Fuks, M.L. Mangano, Pinning down top dipole moments with ultra-boosted tops. Phys. Rev. D 91, 094021 (2015). https://doi.org/10.1103/PhysRevD.91.094021 . arXiv:1412.6654 [hep-ph], Preprint CERN-PH-TH-2014-259
    P. Torrielli, Rare Standard Model processes for present and future hadronic colliders. arXiv:1407.1623 [hep-ph], Preprint ZU-TH-22-14
    F. Maltoni, D. Pagani, I. Tsinikos, Associated production of a top-quark pair with vector bosons at NLO in QCD: impact on $$t \bar{t} H$$ t t ¯ H searches at the LHC. arXiv:1507.05640 [hep-ph], Preprint CP3-15-20
    R. Röntsch, M. Schulze, Probing top-Z dipole moments at the LHC and ILC. JHEP 08, 044 (2015). https://doi.org/10.1007/JHEP08(2015)044 . arXiv:1501.05939 [hep-ph], Preprint CERN-PH-TH-2015-004, FERMILAB-PUB-15-010-T
    M. Schulze, Y. Soreq, Pinning down electroweak dipole operators of the top quark. Eur. Phys. J. C 76(8), 466 (2016). https://doi.org/10.1140/epjc/s10052-016-4263-x . arXiv:1603.08911 [hep-ph], Preprint CERN-TH-2016-070, MIT-CTP-4790
    J.A. Aguilar-Saavedra, D. Amidei, A. Juste, M. Perez-Victoria, Asymmetries in top quark pair production at hadron colliders. Rev. Mod. Phys. 87, 421–455 (2015). https://doi.org/10.1103/RevModPhys.87.421 . arXiv:1406.1798 [hep-ph], Preprint CERN-PH-TH-2014-101
    F. Maltoni, M.L. Mangano, I. Tsinikos, M. Zaro, Top-quark charge asymmetry and polarization in $$t\overline{t}W$$ t t ¯ W production at the LHC. Phys. Lett. B 736, 252–260 (2014). https://doi.org/10.1016/j.physletb.2014.07.033 . arXiv:1406.3262 [hep-ph], Preprint CP3-14-23, CERN-PH-TH-2014-102, LPN14-075
    J.A. Aguilar-Saavedra, E. Álvarez, A. Juste, F. Rubbo, Shedding light on the $$t \bar{t}$$ t t ¯ asymmetry: the photon handle. JHEP 04, 188 (2014). https://doi.org/10.1007/JHEP04(2014)188 . arXiv:1402.3598 [hep-ph]
    A. Papaefstathiou, G. Tetlalmatzi-Xolocotzi, Rare top quark decays at a 100 TeV proton-proton collider: $$t \rightarrow bWZ$$ t → b W Z and $$t\rightarrow hc$$ t → h c . Eur. Phys. J. C 78(3), 214 (2018). https://doi.org/10.1140/epjc/s10052-018-5701-8 . arXiv:1712.06332 [hep-ph], Preprint NIKHEF-2017-069, MCNET-17-24
    S. Dutta, A. Goyal, M. Kumar, B. Mellado, Measuring anomalous $$Wtb$$ Wtb couplings at $$e^-p$$ e - p collider. Eur. Phys. J. C 75(12), 577 (2015). https://doi.org/10.1140/epjc/s10052-015-3776-z . arXiv:1307.1688 [hep-ph]
    H. Denizli, A. Senol, A. Yilmaz, I. Turk Cakir, H. Karadeniz, O. Cakir, Top quark FCNC couplings at future circular hadron electron colliders. Phys. Rev. D 96(1), 015024 (2017). https://doi.org/10.1103/PhysRevD.96.015024 . arXiv:1701.06932 [hep-ph]
    S. Ovyn, X. Rouby, V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment. arXiv:0903.2225 [hep-ph], Preprint CP3-09-01
    CMS Collaboration, V. Khachatryan et al., Measurement of the t-channel single-top-quark production cross section and of the $$\mid V_{tb} \mid $$ ∣ V tb ∣ CKM matrix element in pp collisions at $$\sqrt{s}$$ s = 8 TeV. JHEP 06, 090 (2014). arXiv:1403.7366 [hep-ex], Preprint CMS-TOP-12-038, CERN-PH-EP-2014-032, https://doi.org/10.1007/JHEP06(2014)090
    H. Sun, Measuring the CKM matrix element $$V_{td}$$ V td and $$V_{ts}$$ V ts at the electron proton colliders, in Proceedings of the 26th International Workshop on Deep Inelastic Scattering and Related Subjects (DIS 2018) 16–20 April 2018, Kobe (2018)
    CMS Collaboration, V. Khachatryan et al., Measurement of the ratio $$\cal{B}(t \rightarrow Wb)/\cal{B}(t \rightarrow Wq)$$ B ( t → Wb ) / B ( t → Wq ) in pp collisions at $$\sqrt{s}$$ s = 8 TeV. Phys. Lett. B 736, 33–57 (2014). arXiv:1404.2292 [hep-ex], Preprint CMS-TOP-12-035, CERN-PH-EP-2014-052, https://doi.org/10.1016/j.physletb.2014.06.076
    J.A. Aguilar-Saavedra, Top flavor-changing neutral interactions: theoretical expectations and experimental detection. Acta Phys. Polon. B 35, 2695–2710 (2004). arXiv:hep-ph/0409342 [hep-ph]
    J. Charles et al., Current status of the Standard Model CKM fit and constraints on $$\Delta F=2$$ Δ F = 2 new physics. Phys. Rev. D 91(7), 073007 (2015). https://doi.org/10.1103/PhysRevD.91.073007 . arXiv:1501.05013 [hep-ph], Preprint LPT-ORSAY-15-04
    O. Cakir, A. Yilmaz, I. Turk Cakir, A. Senol, H. Denizli, Probing top quark FCNC $$tq\gamma $$ t q γ and $$tqZ$$ tqZ couplings at future electron–proton colliders. arXiv:1809.01923 [hep-ph]
    Top Quark Working Group Collaboration, K. Agashe et al., Working Group Report: Top Quark in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, July 29–August 6, 2013 (2013). arXiv:1311.2028 [hep-ph], http://www.slac.stanford.edu/econf/C1307292/docs/Top-21.pdf
    H. Sun, X. Wang, Exploring the anomalous top-Higgs FCNC couplings at the electron proton colliders. Eur. Phys. J. C 78(4), 281 (2018). https://doi.org/10.1140/epjc/s10052-018-5761-9 . arXiv:1602.04670 [hep-ph]
    A.O. Bouzas, F. Larios, Probing tt $$\gamma $$ γ and ttZ couplings at the LHeC. Phys. Rev. D 88(9), 094007 (2013). https://doi.org/10.1103/PhysRevD.88.094007 . arXiv:1308.5634 [hep-ph]
    S. Atag, B. Sahin, Effect of top quark spin on the Wtb couplings in e+ p collisions. Phys. Rev. D 73, 074001 (2006). https://doi.org/10.1103/PhysRevD.73.074001
    G.R. Boroun, Geometrical scaling behavior of the top structure functions ratio at the LHeC. Phys. Lett. B 744, 142–145 (2015). https://doi.org/10.1016/j.physletb.2015.03.051 . arXiv:1503.01590 [hep-ph]
    LHCb Collaboration, I. Bediaga et al., Physics case for an LHCb Upgrade II—opportunities in flavour physics, and beyond, in the HL-LHC era. arXiv:1808.08865 , Preprint LHCB-PUB-2018-009, CERN-LHCC-2018-027
    Belle II Collaboration, E. Kou et al., The Belle II Physics Book. arXiv:1808.10567 [hep-ex], Preprint KEK Preprint 2018-27, BELLE2-PUB-PH-2018-001, FERMILAB-PUB-18-398-T, JLAB-THY-18-2780, INT-PUB-18-047, UWThPh 2018-26
    W. Altmannshofer, D.M. Straub, New physics in $$B \rightarrow K^*\mu \mu $$ B → K ∗ μ μ ? Eur. Phys. J C 73, 2646 (2013). https://doi.org/10.1140/epjc/s10052-013-2646-9 . arXiv:1308.1501 [hep-ph], Preprint FERMILAB-PUB-13-310-T, MITP-13-047
    A. Buras, F. De Fazio, J. Girrbach, M.V. Carlucci, The anatomy of quark flavour observables in 331 models in the flavour precision era. JHEP 02, 023 (2013). arXiv:1211.1237 [hep-ph], Preprint FLAVOUR(267104)-ERC-25, BARI-TH-12-658, https://doi.org/10.1007/JHEP02(2013)023
    R. Gauld, F. Goertz, U. Haisch, An explicit Z’-boson explanation of the $$B \rightarrow K^* \mu ^+ \mu ^-$$ B → K ∗ μ + μ - anomaly. JHEP 01, 069 (2014). https://doi.org/10.1007/JHEP01(2014)069 . arXiv:1310.1082 [hep-ph]
    S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, Global analysis of $$b\rightarrow s\ell \ell $$ b → s ℓ ℓ anomalies. JHEP 06, 092 (2016). https://doi.org/10.1007/JHEP06(2016)092 . arXiv:1510.04239 [hep-ph], Preprint LPT-ORSAY-15-68, QFET-2015-29, SI-HEP-2015-19
    LHCb Collaboration, R. Aaij et al., Test of lepton universality using $$B^{+}\rightarrow K^{+}\ell ^{+}\ell ^{-}$$ B + → K + ℓ + ℓ - decays. Phys. Rev. Lett. 113, 151601 (2014). arXiv:1406.6482 [hep-ex], Preprint CERN-PH-EP-2014-140, LHCB-PAPER-2014-024, https://doi.org/10.1103/PhysRevLett.113.151601
    LHCb Collaboration, R. Aaij et al., Angular analysis of the $$B^{0} \rightarrow K^{*0} \mu ^{+} \mu ^{-}$$ B 0 → K ∗ 0 μ + μ - decay using 3 fb $$^{-1}$$ - 1 of integrated luminosity. JHEP 02, 104 (2016). arXiv:1512.04442 [hep-ex], Preprint CERN-PH-EP-2015-314, LHCB-PAPER-2015-051, https://doi.org/10.1007/JHEP02(2016)104
    Belle Collaboration, A. Abdesselam et al., Angular analysis of $$B^0 \rightarrow K^\ast (892)^0 \ell ^+ \ell ^-$$ B 0 → K * ( 892 ) 0 ℓ + ℓ - in LHC Ski 2016 (2016). arXiv:1604.04042 [hep-ex], https://inspirehep.net/record/1446979/files/arXiv:1604.04042.pdf
    F. Gaede, S. Aplin, R. Glattauer, C. Rosemann, G. Voutsinas, Track reconstruction at the ILC: the ILD tracking software. J. Phys. Conf. Ser. 513(2), 022011 (2014). http://stacks.iop.org/1742-6596/513/i=2/a=022011
    J.F. Kamenik, S. Monteil, A. Semkiv, L.V. Silva, Lepton polarization asymmetries in rare semi-tauonic $$ b \rightarrow s $$ b → s exclusive decays at FCC- $$ee$$ ee . Eur. Phys. J. C 77(10), 701 (2017). https://doi.org/10.1140/epjc/s10052-017-5272-0 . arXiv:1705.11106 [hep-ph]
    T. Asaka, S. Blanchet, M. Shaposhnikov, The nuMSM, dark matter and neutrino masses. Phys. Lett. B 631, 151–156 (2005). https://doi.org/10.1016/j.physletb.2005.09.070 . arXiv:hep-ph/0503065 [hep-ph]
    R.N. Mohapatra, J.W.F. Valle, Neutrino mass and Baryon number nonconservation in superstring models. Phys. Rev. D 34, 1642 (1986). https://doi.org/10.1103/PhysRevD.34.1642 . Preprint MdDP-PP-86-127
    A. Abada, V. De Romeri, S. Monteil, J. Orloff, A.M. Teixeira, Indirect searches for sterile neutrinos at a high-luminosity Z-factory. JHEP 04, 051 (2015). https://doi.org/10.1007/JHEP04(2015)051 . arXiv:1412.6322 [hep-ph], Preprint LPT-Orsay-14-78, PCCF-RI-14-07
    COMET Collaboration, Y. Kuno, A search for muon-to-electron conversion at J-PARC: the COMET experiment. PTEP 2013, 022C01 (2013). Preprint 2013PTEP.2013b2C01K, https://doi.org/10.1093/ptep/pts089
    L3 Collaboration, O. Adriani et al., Search for LFV in $$Z$$ Z decays. Phys. Lett. B 316, 427–434 (1993). Preprint CERN-PPE-93-151, https://doi.org/10.1016/0370-2693(93)90348-L
    OPAL Collaboration, R. Akers et al., A search for LFV $$Z^0$$ Z 0 decays. Z. Phys. C 67, 555–564 (1995). Preprint CERN-PPE-95-043, CERN-PPE-95-43, https://doi.org/10.1007/BF01553981
    DELPHI Collaboration, P. Abreu et al., Search for LF number violating $$Z^0$$ Z 0 decays. Z. Phys. C 73, 243–251 (1997). Preprint CERN-PPE-96-129, https://doi.org/10.1007/s002880050313
    ATLAS Collaboration, G. Aad et al., Search for the LFV decay $$Z \rightarrow e\mu $$ Z → e μ in pp collisions at $$\sqrt{s}$$ s = 7 TeV with the ATLAS detector. Phys. Rev. D 90(7), 072010 (2014). arXiv:1408.5774 [hep-ex], Preprint CERN-PH-EP-2014-195, https://doi.org/10.1103/PhysRevD.90.072010
    M. Dam, Tau-lepton physics at the FCC-ee circular e $$^+$$ + e $$^-$$ - collider. Sci. Post Phys. Proc., 41 (2019). arXiv:1811.09408 [hep-ex], https://doi.org/10.21468/SciPostPhysProc.1.041
    A. Pich, Precision tau physics. Prog. Part. Nucl. Phys. 75, 41–85 (2014). https://doi.org/10.1016/j.ppnp.2013.11.002
    A. Greljo, G. Isidori, D. Marzocca, On the breaking of lepton flavor universality in B decays. JHEP 07, 142 (2015). https://doi.org/10.1007/JHEP07(2015)142 . arXiv:1506.01705 [hep-ph], Preprint ZU-TH-16-15
    F. Feruglio, P. Paradisi, A. Pattori, Revisiting lepton flavor universality in B decays. Phys. Rev. Lett. 118(1), 011801 (2017). https://doi.org/10.1103/PhysRevLett.118.011801 . arXiv:1606.00524 [hep-ph]
    ALEPH Collaboration, S. Schael et al., Branching ratios and spectral functions of $$\tau $$ τ decays: final ALEPH measurements and physics implications. Phys. Rep. 421(5), 191–284 (2005)
    DELPHI Collaboration, P. Abreu et al., Measurements of the leptonic branching fractions of the tau. Eur. Phys. J. C 10(2), 201–218 (1999)
    L3 Collaboration, M. Acciarri et al., Measurement of the tau branching fractions into leptons. Phys. Lett. B 507(1), 47–60 (2001)
    G. Abbiendi et al., A measurement of the $$\tau ^- \rightarrow \text{ e }^-\bar{\nu }_{{\rm e}} \nu _\tau $$ τ - → e - ν ¯ e ν τ branching ratio. Phys. Lett. B 447(1), 134–146 (1999)
    OPAL Collaboration, G. Abbiendi et al., A measurement of the $$\tau ^- \rightarrow \mu ^-\bar{\nu }_\mu \nu _\tau $$ τ - → μ - ν ¯ μ ν τ branching ratio. Phys. Lett. B 551(1), 35–48 (2003)
    A. Lusiani, HFLAV branching fractions fit and measurements of Vus with lepton data. Sci. Post Phys. Proc. 1 (2019). https://doi.org/10.21468/SciPostPhysProc.1.001
    Belle Collaboration, K. Belous et al., Measurement of the $$\tau $$ τ -lepton Lifetime at Belle. Phys. Rev. Lett. 112, 031801 (2014)
    M. Bordone, C. Cornella, J. Fuentes-Martin, G. Isidori, Low-energy signatures of the $$\text{ PS }^3$$ PS 3 model: from $$B$$ B -physics anomalies to LFV. JHEP 10, 148 (2018). https://doi.org/10.1007/JHEP10(2018)148 . arXiv:1805.09328 [hep-ph], Preprint ZU-TH-18/18, ZU-TH-18-18
    Belle, BaBar Collaboration, A.J. Bevan et al., The physics of the B factories. Eur. Phys. J. C 74, 3026 (2014). arXiv:1406.6311 [hep-ex], Preprint SLAC-PUB-15968, KEK-PREPRINT-2014-3, FERMILAB-PUB-14-262-T, https://doi.org/10.1140/epjc/s10052-014-3026-9
    LHCb Collaboration, M.W. Kenzie, M.P. Whitehead, Update of the LHCb combination of the CKM angle $$\gamma $$ γ (2018). LHCb-CONF-2018-002, CERN-LHCb-CONF-2018-002
    G. D’Ambrosio, G.F. Giudice, G. Isidori, A. Strumia, Minimal flavor violation: an effective field theory approach. Nucl. Phys. B 645, 155–187 (2002). https://doi.org/10.1016/S0550-3213(02)00836-2 . arXiv:hep-ph/0207036 [hep-ph], Preprint CERN-TH-2002-147, IFUP-TH-2002-17
    A. Lenz, U. Nierste, J. Charles, S. Descotes-Genon, A. Jantsch, C. Kaufhold, H. Lacker, S. Monteil, V. Niess, S. T’Jampens, Anatomy of new physics in $$B - \bar{B}$$ B - B ¯ mixing. Phys. Rev. D 83, 036004 (2011). https://doi.org/10.1103/PhysRevD.83.036004 . arXiv:1008.1593 [hep-ph], Preprint HU-EP-10-43-TTP10-33, DO-TH-10-05, SFB-CPP-10-68, LPT-ORSAY-10-59, CPT-P040-2010
    A.G. Akeroyd, C.H. Chen, S. Recksiegel, Measuring $$B^\pm \rightarrow \tau ^\pm \nu $$ B ± → τ ± ν and $$B^\pm _c \rightarrow \tau ^\pm \nu $$ B c ± → τ ± ν at the $$Z$$ Z peak. Phys. Rev. D 77, 115018 (2008). https://doi.org/10.1103/PhysRevD.77.115018 . arXiv:0803.3517 [hep-ph], Preprint TUM-HEP-683-08
    Y. Grossman, M. König, M. Neubert, Exclusive radiative decays of W and Z bosons in QCD factorization. JHEP 04, 101 (2015). https://doi.org/10.1007/JHEP04(2015)101 . arXiv:1501.06569 [hep-ph], Preprint MITP-15-002
    W. Buchmuller, D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation. Nucl. Phys. B 268, 621–653 (1986). https://doi.org/10.1016/0550-3213(86)90262-2 . Preprint CERN-TH-4254/85
    G.F. Giudice, C. Grojean, A. Pomarol, R. Rattazzi, The strongly-interacting light Higgs. JHEP 06, 045 (2007). https://doi.org/10.1088/1126-6708/2007/06/045 . arXiv:hep-ph/0703164 [hep-ph], Preprint CERN-PH-TH-2007-47
    B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rosiek, Dimension-six terms in the standard model Lagrangian. JHEP 10, 085 (2010). https://doi.org/10.1007/JHEP10(2010)085 . arXiv:1008.4884 [hep-ph], Preprint IFT-9-2010, TTP10-35
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner, M. Spira, Effective Lagrangian for a light Higgs-like scalar. JHEP 07, 035 (2013). https://doi.org/10.1007/JHEP07(2013)035 . arXiv:1303.3876 [hep-ph], Preprint CERN-PH-TH-2013-047, KA-TP-06-2013, PSI-PR-13-04
    LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector. arXiv:1610.07922 [hep-ph], Preprint FERMILAB-FN-1025-T, CERN-2017-002-M, https://doi.org/10.23731/CYRM-2017-002
    A. Kobach, Baryon number, Lepton number, and operator dimension in the standard model. Phys. Lett. B 758, 455–457 (2016). https://doi.org/10.1016/j.physletb.2016.05.050 . arXiv:1604.05726 [hep-ph], Preprint PHYS.LETT.-B758-(2016)-455-457
    HEPfit Collaboration, HEPfit: a code for the combination of indirect and direct constraints on high energy physics models (in preparation)
    HEPfit Collaboration. http://hepfit.roma1.infn.it
    M. Farina, G. Panico, D. Pappadopulo, J.T. Ruderman, R. Torre, A. Wulzer, Energy helps accuracy: electroweak precision tests at hadron colliders. Phys. Lett. B 772, 210–215 (2017). https://doi.org/10.1016/j.physletb.2017.06.043 . arXiv:1609.08157 [hep-ph], Preprint CERN-TH-2016-205
    R. Barbieri, A. Pomarol, R. Rattazzi, A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2. Nucl. Phys. B 703, 127–146 (2004). https://doi.org/10.1016/j.nuclphysb.2004.10.014 . arXiv:hep-ph/0405040 [hep-ph], Preprint CERN-PH-TH-2004-075, IFUP-TH-2004-13, UAB-FT-565
    D.S.M. Alves, J. Galloway, J.T. Ruderman, J.R. Walsh, Running electroweak couplings as a probe of new physics. JHEP 02, 007 (2015). https://doi.org/10.1007/JHEP02(2015)007 . arXiv:1410.6810 [hep-ph]
    LHC Higgs Cross Section Working Group Collaboration, A. David, A. Denner, M. Duehrssen, M. Grazzini, C. Grojean, G. Passarino, M. Schumacher, M. Spira, G. Weiglein, M. Zanetti, LHC HXSWG interim recommendations to explore the coupling structure of a Higgs-like particle. arXiv:1209.0040 [hep-ph], Preprint CERN-PH-TH-2012-284, LHCHXSWG-2012-001
    LHC Higgs Cross Section Working Group Collaboration, J.R. Andersen et al., Handbook of LHC Higgs Cross Sections: 3. Higgs Properties. arXiv:1307.1347 [hep-ph], Preprint CERN-2013-004, FERMILAB-CONF-13-667-T, https://doi.org/10.5170/CERN-2013-004
    J. Elias-Miro, J.R. Espinosa, E. Masso, A. Pomarol, Higgs windows to new physics through d=6 operators: constraints and one-loop anomalous dimensions. JHEP 11, 066 (2013). https://doi.org/10.1007/JHEP11(2013)066 . arXiv:1308.1879 [hep-ph]
    A. Pomarol, F. Riva, Towards the ultimate SM fit to close in on Higgs physics. JHEP 01, 51 (2014). https://doi.org/10.1007/JHEP01(2014)151 . arXiv:1308.2803 [hep-ph]
    J. Ellis, V. Sanz, T. You, Complete Higgs sector constraints on dimension-6 operators. JHEP 07, 036 (2014). https://doi.org/10.1007/JHEP07(2014)036 . arXiv:1404.3667 [hep-ph], Preprint KCL-PH-TH-2014-15, LCTS-2014-14, CERN-PH-TH-2014-061
    A. Falkowski, Effective field theory approach to LHC Higgs data. Pramana 87(3), 39 (2016). https://doi.org/10.1007/s12043-016-1251-5 . arXiv:1505.00046 [hep-ph], Preprint LPT-ORSAY-15-33
    A. Butter, O.J.P. Eboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn, M. Rauch, The Gauge-Higgs legacy of the LHC Run I. JHEP 07, 152 (2016). https://doi.org/10.1007/JHEP07(2016)152 . arXiv:1604.03105 [hep-ph], Preprint YITP-SB-16-10
    J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina, L. Silvestrini, The Global Electroweak and Higgs Fits in the LHC era, in 5th Large Hadron Collider Physics Conference (LHCP 2017) Shanghai, May 15–20, 2017 (2017). arXiv:1710.05402 [hep-ph]
    J. de Blas, O. Eberhardt, C. Krause, Current and future constraints on Higgs couplings in the nonlinear effective theory. JHEP 07, 048 (2018). https://doi.org/10.1007/JHEP07(2018)048 . arXiv:1803.00939 [hep-ph], Preprint IFIC-17-48, FTUV-18-0305, FERMILAB-PUB-18-058-T
    Z. Han, W. Skiba, Effective theory analysis of precision electroweak data. Phys. Rev. D 71, 075009 (2005). https://doi.org/10.1103/PhysRevD.71.075009 . arXiv:hep-ph/0412166 [hep-ph]
    M. Ciuchini, E. Franco, S. Mishima, L. Silvestrini, Electroweak precision observables, new physics and the nature of a 126 GeV Higgs boson. JHEP 08, 106 (2013). https://doi.org/10.1007/JHEP08(2013)106 . arXiv:1306.4644 [hep-ph]
    A. Falkowski, F. Riva, Model-independent precision constraints on dimension-6 operators. JHEP 02, 039 (2015). https://doi.org/10.1007/JHEP02(2015)039 . arXiv:1411.0669 [hep-ph], Preprint LPT-ORSAY-14-77
    A. Efrati, A. Falkowski, Y. Soreq, Electroweak constraints on flavorful effective theories. JHEP 07, 018 (2015). https://doi.org/10.1007/JHEP07(2015)018 . arXiv:1503.07872 [hep-ph], Preprint LPT-ORSAY-15-23
    A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca, Global constraints on anomalous triple gauge couplings in effective field theory approach. Phys. Rev. Lett. 116(1), 011801 (2016). https://doi.org/10.1103/PhysRevLett.116.011801 . arXiv:1508.00581 [hep-ph]
    A. Falkowski, M. Gonzalez-Alonso, A. Greljo, D. Marzocca, M. Son, Anomalous triple gauge couplings in the effective field theory approach at the LHC. JHEP 02, 115 (2017). https://doi.org/10.1007/JHEP02(2017)115 . arXiv:1609.06312 [hep-ph], Preprint ZU-TH-34-16
    Z. Zhang, Time to go beyond triple-gauge-boson-coupling interpretation of $$W$$ W pair production. Phys. Rev. Lett. 118(1), 011803 (2017). https://doi.org/10.1103/PhysRevLett.118.011803 . arXiv:1610.01618 [hep-ph], Preprint MCTP-16-24, DESY-16-189
    J. Ellis, V. Sanz, T. You, The effective standard model after LHC Run I. JHEP 03, 157 (2015). https://doi.org/10.1007/JHEP03(2015)157 . arXiv:1410.7703 [hep-ph], Preprint KCL-PH-TH-2014-41, LCTS-2014-41, CERN-PH-TH-2014-201
    N. Craig, M. Farina, M. McCullough, M. Perelstein, Precision Higgsstrahlung as a probe of new physics. JHEP 03, 146 (2015). https://doi.org/10.1007/JHEP03(2015)146 . arXiv:1411.0676 [hep-ph]
    B. Henning, X. Lu, H. Murayama, What do precision Higgs measurements buy us?. arXiv:1404.1058 [hep-ph], Preprint UCB-PTH-14-06, IPMU14-0082
    N. Craig, J. Gu, Z. Liu, K. Wang, Beyond Higgs couplings: probing the Higgs with angular observables at future $$\text{ e }^{+}$$ e + $$\text{ e }^{-}$$ e - colliders. JHEP 03, 050 (2016). https://doi.org/10.1007/JHEP03(2016)050 . arXiv:1512.06877 [hep-ph], Preprint FERMILAB-PUB-15-569-T
    J. Ellis, T. You, Sensitivities of prospective future e+e $$-$$ - colliders to decoupled new physics. JHEP 03, 089 (2016). https://doi.org/10.1007/JHEP03(2016)089 . arXiv:1510.04561 [hep-ph], Preprint KCL-PH-TH-2015-47, LCTS-2015-35, CERN-PH-TH-2015-244, DAMTP-2015-62, CAVENDISH-HEP-15-09
    J. de Blas, M. Ciuchini, E. Franco, S. Mishima, M. Pierini, L. Reina, L. Silvestrini, Electroweak precision observables and Higgs-boson signal strengths in the Standard Model and beyond: present and future. JHEP 12, 135 (2016). https://doi.org/10.1007/JHEP12(2016)135 . arXiv:1608.01509 [hep-ph], Preprint KEK-TH-1919
    J. Ellis, P. Roloff, V. Sanz, T. You, Dimension-6 operator analysis of the CLIC sensitivity to new physics. JHEP 05, 096 (2017). https://doi.org/10.1007/JHEP05(2017)096 . arXiv:1701.04804 [hep-ph], Preprint KCL-PH-TH-2017-04, CERN-TH-2017-009, CAVENDISH-HEP-17-01, CERN-PH-TH-2017-009, DAMTP-2017-01
    G. Durieux, C. Grojean, J. Gu, K. Wang, The leptonic future of the Higgs. JHEP 09, 014 (2017). https://doi.org/10.1007/JHEP09(2017)014 . arXiv:1704.02333 [hep-ph], Preprint DESY-17-018
    M. Beneke, D. Boito, Y.-M. Wang, Anomalous Higgs couplings in angular asymmetries of $$H \rightarrow Z\ell ^{+} \ell ^{-}$$ H → Z ℓ + ℓ - and $$\text{ e }^{+}$$ e + $$\text{ e }^{-} \rightarrow HZ$$ e - → H Z . JHEP 11, 028 (2014). https://doi.org/10.1007/JHEP11(2014)028 . arXiv:1406.1361 [hep-ph], Preprint TUM-HEP-849-14, TTK-14-11, SFB-CPP-14-28, TUM-HEP-949-14
    M. Kumar, X. Ruan, R. Islam, A.S. Cornell, M. Klein, U. Klein, B. Mellado, Probing anomalous couplings using di-Higgs production in electron-proton collisions. Phys. Lett. B 764, 247–253 (2017). https://doi.org/10.1016/j.physletb.2016.11.039 . arXiv:1509.04016 [hep-ph], Preprint WITS-MITP-019
    M. Farina, C. Grojean, F. Maltoni, E. Salvioni, A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson. JHEP 05, 022 (2013). https://doi.org/10.1007/JHEP05(2013)022 . arXiv:1211.3736 [hep-ph], Preprint CERN-PH-TH-2012-313, DFPD-2012-TH-20, CP3-12-47
    C. Degrande, F. Maltoni, K. Mimasu, E. Vryonidou, C. Zhang, Single-top associated production with a $$Z$$ Z or $$H$$ H boson at the LHC: the SMEFT interpretation. JHEP 10, 005 (2018). https://doi.org/10.1007/JHEP10(2018)005 . arXiv:1804.07773 [hep-ph], Preprint CERN-TH-2018-092
    A. Azatov, R. Contino, G. Panico, M. Son, Effective field theory analysis of double Higgs boson production via gluon fusion. Phys. Rev. D 92(3), 035001 (2015). https://doi.org/10.1103/PhysRevD.92.035001 . arXiv:1502.00539 [hep-ph], Preprint CERN-PH-TH-2015-015
    A. Azatov, C. Grojean, A. Paul, E. Salvioni, Resolving gluon fusion loops at current and future hadron colliders. JHEP 09, 123 (2016). https://doi.org/10.1007/JHEP09(2016)123 . arXiv:1608.00977 [hep-ph]
    A. Biekötter, A. Knochel, M. Krämer, D. Liu, F. Riva, Vices and virtues of Higgs effective field theories at large energy. Phys. Rev. D 91, 055029 (2015). https://doi.org/10.1103/PhysRevD.91.055029 . arXiv:1406.7320 [hep-ph]
    S. Banerjee, C. Englert, R.S. Gupta, M. Spannowsky, Probing electroweak precision physics via boosted Higgs-strahlung at the LHC. arXiv:1807.01796 [hep-ph], Preprint IPPP/18/53, IPPP-18-53
    A. Senol, H. Denizli, A. Yilmaz, I. Turk Cakir, K.Y. Oyulmaz, O. Karadeniz, O. Cakir, Probing the effects of dimension-eight operators describing anomalous neutral triple Gauge boson interactions at FCC-hh. Nucl. Phys. B 935, 365–376 (2018). https://doi.org/10.1016/j.nuclphysb.2018.08.018 . arXiv:1805.03475 [hep-ph]
    C. Grojean, E. Salvioni, M. Schlaffer, A. Weiler, Very boosted Higgs in gluon fusion. JHEP 05, 022 (2014). https://doi.org/10.1007/JHEP05(2014)022 . arXiv:1312.3317 [hep-ph], Preprint CERN-PH-TH-2013-292, DESY-13-233
    A. Banfi, A. Martin, V. Sanz, Probing top-partners in Higgs+jets. JHEP 08, 053 (2014). https://doi.org/10.1007/JHEP08(2014)053 . arXiv:1308.4771 [hep-ph], Preprint CERN-PH-TH-2013-199
    A. Azatov, A. Paul, Probing Higgs couplings with high $$p_T$$ p T Higgs production. JHEP 01, 014 (2014). https://doi.org/10.1007/JHEP01(2014)014 . arXiv:1309.5273 [hep-ph]
    R. Essig, P. Meade, H. Ramani, Y.-M. Zhong, Higgs-precision constraints on colored naturalness. JHEP 09, 085 (2017). https://doi.org/10.1007/JHEP09(2017)085 . arXiv:1707.03399 [hep-ph], Preprint YITP-SB-17-25
    T. Golling et al., Physics at a 100 TeV pp collider: beyond the Standard Model phenomena, CERN Yellow Report No. 3, pp. 441–634 (2017). arXiv:1606.00947 [hep-ph], Preprint CERN-TH-2016-111, FERMILAB-PUB-16-296-T, https://doi.org/10.23731/CYRM-2017-003.441
    T. Cohen, R.T. D’Agnolo, M. Hance, H.K. Lou, J.G. Wacker, Boosting stop searches with a 100 TeV proton collider. JHEP 11, 021 (2014). https://doi.org/10.1007/JHEP11(2014)021 . arXiv:1406.4512 [hep-ph], Preprint SLAC-PUB-15987
    L. Gouskos, A. Sung, J. Incandela, Search for stop scalar quarks at FCC-hh. CERN-ACC-2019-0036. CERN, Geneva (2018). Preprint CERN-ACC-2019-0036. https://cds.cern.ch/record/2642475
    A. Thamm, R. Torre, A. Wulzer, Future tests of Higgs compositeness: direct vs indirect. JHEP 07, 100 (2015). https://doi.org/10.1007/JHEP07(2015)100 . arXiv:1502.01701 [hep-ph], Preprint DFPD-2014-TH-03, MITP-14-109
    Z. Chacko, H.-S. Goh, R. Harnik, The twin Higgs: natural electroweak breaking from mirror symmetry. Phys. Rev. Lett. 96, 231802 (2006). https://doi.org/10.1103/PhysRevLett.96.231802 . arXiv:hep-ph/0506256 [hep-ph]
    Z. Chacko, H.-S. Goh, R. Harnik, A twin Higgs model from left-right symmetry. JHEP 01, 108 (2006). https://doi.org/10.1088/1126-6708/2006/01/108 . arXiv:hep-ph/0512088 [hep-ph], Preprint SLAC-PUB-11595
    G. Burdman, Z. Chacko, H.-S. Goh, R. Harnik, Folded supersymmetry and the LEP paradox. JHEP 02, 009 (2007). https://doi.org/10.1088/1126-6708/2007/02/009 . arXiv:hep-ph/0609152 [hep-ph], Preprint SLAC-PUB-12115
    J.J. van der Bij, Does low-energy physics depend on the potential of a heavy Higgs particle? Nucl. Phys. B 267, 557–565 (1986). https://doi.org/10.1016/0550-3213(86)90131-8 . Preprint NIKHEF-H/85-1
    M. McCullough, An indirect model-dependent probe of the Higgs self-coupling. Phys. Rev. D 90(1), 015001 (2014). arXiv:1312.3322 [hep-ph], Preprint MIT-CTP-4521, https://doi.org/10.1103/PhysRevD.90.015001 , https://doi.org/10.1103/PhysRevD.92.039903 [Erratum: Phys. Rev. D 92(3), 039903 (2015)]
    S. Di Vita, G. Durieux, C. Grojean, J. Gu, Z. Liu, G. Panico, M. Riembau, T. Vantalon, A global view on the Higgs self-coupling at lepton colliders. JHEP 02, 178 (2018). https://doi.org/10.1007/JHEP02(2018)178 . arXiv:1711.03978 [hep-ph], Preprint DESY-17-131, FERMILAB-PUB-17-462-T
    LHC Higgs cross section working group, HH sub-group. https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGHH
    S. Borowka, N. Greiner, G. Heinrich, S.P. Jones, M. Kerner, J. Schlenk, T. Zirke, Full top quark mass dependence in Higgs boson pair production at NLO. JHEP 10, 107 (2016). https://doi.org/10.1007/JHEP10(2016)107 . arXiv:1608.04798 [hep-ph], Preprint MPP-2016-261, ZU-TH-31-16
    M. Grazzini, G. Heinrich, S. Jones, S. Kallweit, M. Kerner, J.M. Lindert, J. Mazzitelli, Higgs boson pair production at NNLO with top quark mass effects. JHEP 05, 059 (2018). https://doi.org/10.1007/JHEP05(2018)059 . arXiv:1803.02463 [hep-ph], Preprint CERN-TH-2018-044, IPPP/18/15, MPP-2018-30, ZU-TH 10/18, IPPP-18-15, ZU-TH-10-18
    DELPHES 3 Collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître, A. Mertens, M. Selvaggi, DELPHES 3, a modular framework for fast simulation of a generic collider experiment. JHEP 02, 057 (2014). arXiv:1307.6346 [hep-ex], https://doi.org/10.1007/JHEP02(2014)057
    D. Contardo, M. Klute, J. Mans, L. Silvestris, J. Butler, Technical Proposal for the Phase-II Upgrade of the CMS Detector (2015). CERN-LHCC-2015-010, LHCC-P-008, CMS-TDR-15-02
    ATLAS Collaboration, Expected performance for an upgraded ATLAS detector at high-luminosity LHC, ATL-PHYS-PUB-2016-026. CERN, Geneva (2016). Preprint ATL-PHYS-PUB-2016-026. https://cds.cern.ch/record/2223839
    D. Gonçalves, T. Han, F. Kling, T. Plehn, M. Takeuchi, Higgs boson pair production at future hadron colliders: from kinematics to dynamics. Phys. Rev. D 97(11), 113004 (2018). https://doi.org/10.1103/PhysRevD.97.113004 . arXiv:1802.04319 [hep-ph], Preprint PITT-PACC-1802, UCI-TR-2018-1, IPMU-18-0028
    S. Homiller, P. Meade, Measurement of the triple Higgs coupling at a HE-LHC. arXiv:1811.02572 [hep-ph], Preprint YITP-SB-18-33
    S. Banerjee, C. Englert, M.L. Mangano, M. Selvaggi, M. Spannowsky, $$hh+\text{ jet }$$ h h + jet production at 100 TeV. Eur. Phys. J. C 78(4), 322 (2018). https://doi.org/10.1140/epjc/s10052-018-5788-y . arXiv:1802.01607 [hep-ph], Preprint IPPP/18/10, LAPTH-034/18, CERN-TH-2018-023, IPPP-18-10, LAPTH-034-18, LAPTH-003-18
    F. Bishara, R. Contino, J. Rojo, Higgs pair production in vector-boson fusion at the LHC and beyond. Eur. Phys. J. C 77(7), 481 (2017). https://doi.org/10.1140/epjc/s10052-017-5037-9 . arXiv:1611.03860 [hep-ph]
    A. Papaefstathiou, K. Sakurai, Triple Higgs boson production at a 100 TeV proton-proton collider. JHEP 02, 006 (2016). https://doi.org/10.1007/JHEP02(2016)006 . arXiv:1508.06524 [hep-ph], Preprint CERN-PH-TH-2015-205
    C.-Y. Chen, Q.-S. Yan, X. Zhao, Y.-M. Zhong, Z. Zhao, Probing triple-Higgs productions via 4b2 $$\gamma $$ γ decay channel at a 100 TeV hadron collider. Phys. Rev. D 93(1), 013007 (2016). https://doi.org/10.1103/PhysRevD.93.013007 . arXiv:1510.04013 [hep-ph]
    B. Fuks, J.H. Kim, S.J. Lee, Scrutinizing the Higgs quartic coupling at a future 100 TeV proton-proton collider with taus and b-jets. Phys. Lett. B 771, 354–358 (2017). https://doi.org/10.1016/j.physletb.2017.05.075 . arXiv:1704.04298 [hep-ph]
    K. Rummukainen, M. Tsypin, K. Kajantie, M. Laine, M.E. Shaposhnikov, The universality class of the electroweak theory. Nucl. Phys. B 532, 283–314 (1998). https://doi.org/10.1016/S0550-3213(98)00494-5 . arXiv:hep-lat/9805013 [hep-lat], Preprint CERN-TH-98-08, NORDITA-98-30-HE
    F. Csikor, Z. Fodor, J. Heitger, Endpoint of the hot electroweak phase transition. Phys. Rev. Lett. 82, 21–24 (1999). https://doi.org/10.1103/PhysRevLett.82.21 . arXiv:hep-ph/9809291 [hep-ph], Preprint ITP-BUDAPEST-541, KEK-TH-580, KEK-PREPRINT-98-160, MS-TPI-98-16
    M. Laine, K. Rummukainen, What’s new with the electroweak phase transition? Nucl. Phys. Proc. Suppl. 73, 180–185 (1999). https://doi.org/10.1016/S0920-5632(99)85017-8 . arXiv:hep-lat/9809045 [hep-lat]
    M. Gurtler, E.-M. Ilgenfritz, A. Schiller, Where the electroweak phase transition ends. Phys. Rev. D 56, 3888–3895 (1997). https://doi.org/10.1103/PhysRevD.56.3888 . arXiv:hep-lat/9704013 [hep-lat], Preprint UL-NTZ-10-97, HUB-EP-97-24, DESY-97-086
    A.D. Sakharov, Violation of CP invariance, c asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967). https://doi.org/10.1070/PU1991v034n05ABEH002497 . [Usp. Fiz. Nauk 161, 61 (1991)]
    D.E. Morrissey, M.J. Ramsey-Musolf, Electroweak baryogenesis. New J. Phys. 14, 125003 (2012). https://doi.org/10.1088/1367-2630/14/12/125003 . arXiv:1206.2942 [hep-ph], Preprint NPAC-12-08
    K. Assamagan et al., The Higgs portal and cosmology. arXiv:1604.05324 [hep-ph], Preprint ACFI-T16-10, FERMILAB-FN-1010-E-PPD, http://inspirehep.net/record/1449094/files/arXiv:1604.05324.pdf
    H.H. Patel, M.J. Ramsey-Musolf, Stepping into electroweak symmetry breaking: phase transitions and Higgs phenomenology. Phys. Rev. D 88, 035013 (2013). https://doi.org/10.1103/PhysRevD.88.035013 . arXiv:1212.5652 [hep-ph]
    H.H. Patel, M.J. Ramsey-Musolf, M.B. Wise, Color breaking in the early universe. Phys. Rev. D 88(1), 015003 (2013). https://doi.org/10.1103/PhysRevD.88.015003 . arXiv:1303.1140 [hep-ph]
    N. Blinov, J. Kozaczuk, D.E. Morrissey, C. Tamarit, Electroweak baryogenesis from exotic electroweak symmetry breaking. Phys. Rev. D 92(3), 035012 (2015). https://doi.org/10.1103/PhysRevD.92.035012 . arXiv:1504.05195 [hep-ph], Preprint IPPP-15-23, DCPT-15-46
    A. Katz, M. Perelstein, Higgs couplings and electroweak phase transition. JHEP 07, 108 (2014). https://doi.org/10.1007/JHEP07(2014)108 . arXiv:1401.1827 [hep-ph]
    A. Katz, M. Perelstein, M.J. Ramsey-Musolf, P. Winslow, Stop-catalyzed baryogenesis beyond the MSSM. Phys. Rev. D 92(9), 095019 (2015). https://doi.org/10.1103/PhysRevD.92.095019 . arXiv:1509.02934 [hep-ph], Preprint CERN-PH-TH-2015-217, ACFI-T15-15
    A.V. Kotwal, M.J. Ramsey-Musolf, J.M. No, P. Winslow, Singlet-catalyzed electroweak phase transitions in the 100 TeV frontier. Phys. Rev. D 94(3), 035022 (2016). https://doi.org/10.1103/PhysRevD.94.035022 . arXiv:1605.06123 [hep-ph], Preprint ACFI-T16-12, FERMILAB-PUB-16-670
    J.R. Espinosa, M. Quiros, The electroweak phase transition with a singlet. Phys. Lett. B 305, 98–105 (1993). https://doi.org/10.1016/0370-2693(93)91111-Y . arXiv:hep-ph/9301285 [hep-ph], Preprint IEM-FT-67-93
    J. Choi, R.R. Volkas, Real Higgs singlet and the electroweak phase transition in the Standard Model. Phys. Lett. B 317, 385–391 (1993). https://doi.org/10.1016/0370-2693(93)91013-D . arXiv:hep-ph/9308234 [hep-ph], Preprint UM-P-93-80, OZ-93-20
    S.W. Ham, Y.S. Jeong, S.K. Oh, Electroweak phase transition in an extension of the standard model with a real Higgs singlet. J. Phys. G 31(8), 857–871 (2005). https://doi.org/10.1088/0954-3899/31/8/017 . arXiv:hep-ph/0411352 [hep-ph]
    S. Profumo, M.J. Ramsey-Musolf, G. Shaughnessy, Singlet Higgs phenomenology and the electroweak phase transition. JHEP 08, 010 (2007). https://doi.org/10.1088/1126-6708/2007/08/010 . arXiv:0705.2425 [hep-ph], Preprint CALTECH-MAP-333, MADPH-07-1489
    J.M. Cline, K. Kainulainen, Electroweak baryogenesis and dark matter from a singlet Higgs. JCAP 1301, 012 (2013). https://doi.org/10.1088/1475-7516/2013/01/012 . arXiv:1210.4196 [hep-ph]
    J.R. Espinosa, T. Konstandin, F. Riva, Strong electroweak phase transitions in the standard model with a singlet. Nucl. Phys. B 854, 592–630 (2012). https://doi.org/10.1016/j.nuclphysb.2011.09.010 . arXiv:1107.5441 [hep-ph], Preprint CERN-PH-TH-2011-171
    J.M. No, M. Ramsey-Musolf, Probing the Higgs portal at the LHC through resonant di-Higgs production. Phys. Rev. D 89(9), 095031 (2014). https://doi.org/10.1103/PhysRevD.89.095031 . arXiv:1310.6035 [hep-ph]
    D. Curtin, P. Meade, C.-T. Yu, Testing electroweak baryogenesis with future colliders. JHEP 11, 127 (2014). https://doi.org/10.1007/JHEP11(2014)127 . arXiv:1409.0005 [hep-ph], Preprint YITP-SB-14-33
    T. Brauner, T.V.I. Tenkanen, A. Tranberg, A. Vuorinen, D.J. Weir, Dimensional reduction of the Standard Model coupled to a new singlet scalar field. JHEP 03, 007 (2017). https://doi.org/10.1007/JHEP03(2017)007 . arXiv:1609.06230 [hep-ph], Preprint HIP-2016-27-TH
    P. Huang, A.J. Long, L.-T. Wang, Probing the electroweak phase transition with Higgs factories and gravitational waves. Phys. Rev. D 94(7), 075008 (2016). https://doi.org/10.1103/PhysRevD.94.075008 . arXiv:1608.06619 [hep-ph]
    C.-Y. Chen, J. Kozaczuk, I.M. Lewis, Non-resonant collider signatures of a singlet-driven electroweak phase transition. JHEP 08, 096 (2017). https://doi.org/10.1007/JHEP08(2017)096 . arXiv:1704.05844 [hep-ph], Preprint ACFI-T17-07, SLAC-PUB-16951
    T. Huang, J.M. No, L. Pernié, M. Ramsey-Musolf, A. Safonov, M. Spannowsky, P. Winslow, Resonant di-Higgs boson production in the $$b{\bar{b}}WW$$ b b ¯ W W channel: probing the electroweak phase transition at the LHC. Phys. Rev. D 96(3), 035007 (2017). https://doi.org/10.1103/PhysRevD.96.035007 . arXiv:1701.04442 [hep-ph]
    V. Barger, P. Langacker, M. McCaskey, M.J. Ramsey-Musolf, G. Shaughnessy, LHC phenomenology of an extended standard model with a real scalar singlet. Phys. Rev. D 77, 035005 (2008). https://doi.org/10.1103/PhysRevD.77.035005 . arXiv:0706.4311 [hep-ph], Preprint MAD-PH-07-1492
    M. Jiang, L. Bian, W. Huang, J. Shu, Impact of a complex singlet: electroweak baryogenesis and dark matter. Phys. Rev. D 93(6), 065032 (2016). https://doi.org/10.1103/PhysRevD.93.065032 . arXiv:1502.07574 [hep-ph]
    C.-W. Chiang, M.J. Ramsey-Musolf, E. Senaha, Standard model with a complex scalar singlet: cosmological implications and theoretical considerations. Phys. Rev. D 97(1), 015005 (2018). https://doi.org/10.1103/PhysRevD.97.015005 . arXiv:1707.09960 [hep-ph], Preprint NCTS-PH-1724, ACFI-T17-16
    S. Profumo, M.J. Ramsey-Musolf, C.L. Wainwright, P. Winslow, Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies. Phys. Rev. D 91(3), 035018 (2015). https://doi.org/10.1103/PhysRevD.91.035018 . arXiv:1407.5342 [hep-ph]
    L. Niemi, H.H. Patel, M.J. Ramsey-Musolf, T.V.I. Tenkanen, D.J. Weir, Electroweak phase transition in the $$\Sigma $$ Σ SM—I: dimensional reduction. arXiv:1802.10500 [hep-ph]
    G.C. Dorsch, S.J. Huber, J.M. No, A strong electroweak phase transition in the 2HDM after LHC8. JHEP 10, 029 (2013). https://doi.org/10.1007/JHEP10(2013)029 . arXiv:1305.6610 [hep-ph]
    G.C. Dorsch, S.J. Huber, K. Mimasu, J.M. No, Echoes of the Electroweak Phase Transition: Discovering a second Higgs doublet through $$A_0 \rightarrow ZH_0$$ A 0 → Z H 0 . Phys. Rev. Lett. 113(21), 211802 (2014). https://doi.org/10.1103/PhysRevLett.113.211802 . arXiv:1405.5537 [hep-ph]
    D. Curtin, K. Deshpande, O. Fischer, J. Zurita, New physics opportunities for long-lived particles at electron-proton colliders. JHEP 07, 024 (2018). https://doi.org/10.1007/JHEP07(2018)024 . arXiv:1712.07135 [hep-ph], Preprint TTP17-053
    J. Kozaczuk, A. Long, J.-M. No, M. Ramsey-Musolf, Electroweak phase transition at the FCC (to appear)
    E.W. Kolb, M.S. Turner, The early universe. Front. Phys. 69, 1–547 (1990)
    K. Griest, M. Kamionkowski, Unitarity limits on the mass and radius of dark matter particles. Phys. Rev. Lett. 64, 615 (1990). https://doi.org/10.1103/PhysRevLett.64.615 . Preprint CFPA-TH-89-013, FERMILAB-PUB-89-205-A
    K. Blum, Y. Cui, M. Kamionkowski, An ultimate target for dark matter searches. Phys. Rev. D 92(2), 023528 (2015). https://doi.org/10.1103/PhysRevD.92.023528 . arXiv:1412.3463 [hep-ph], Preprint UMD-PP-014-022
    M. Cirelli, F. Sala, M. Taoso, Wino-like minimal dark matter and future colliders. JHEP 10, 033 (2014). arXiv:1407.7058 [hep-ph], https://doi.org/10.1007/JHEP10(2014)033 , https://doi.org/10.1007/JHEP01(2015)041 [Erratum: JHEP 01, 041 (2015)]
    D. Curtin et al., Long-lived particles at the energy frontier: the MATHUSLA physics case. arXiv:1806.07396 [hep-ph], Preprint FERMILAB-PUB-18-264-T
    K. Terashi, R. Sawada, M. Saito, S. Asai, Search for WIMPs with disappearing track signatures at the FCC-hh, CERN-ACC-2018-0044. CERN, Geneva (2018). Preprint CERN-ACC-2018-0044. https://cds.cern.ch/record/2642474
    M. Saito, R. Sawada, K. Terashi, S. Asai, Discovery reach for wino and higgsino dark matter with a disappearing track signature at a 100 TeV $$pp$$ pp collider. arXiv:1901.02987 [hep-ph]
    F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz, S. Vogl, Implications of unitarity and gauge invariance for simplified dark matter models. JHEP 02, 016 (2016). https://doi.org/10.1007/JHEP02(2016)016 . arXiv:1510.02110 [hep-ph], Preprint DESY-15-182
    K. Petraki, R.R. Volkas, Review of asymmetric dark matter. Int. J. Mod. Phys. A 28, 1330028 (2013). https://doi.org/10.1142/S0217751X13300287 . arXiv:1305.4939 [hep-ph], Preprint NIKHEF-2013-016
    K.M. Zurek, Asymmetric dark matter: theories, signatures, and constraints. Phys. Rep. 537, 91–121 (2014). https://doi.org/10.1016/j.physrep.2013.12.001 . arXiv:1308.0338 [hep-ph]
    M. Bauer, M. Heiles, M. Neubert, A. Thamm, Axion-like particles at future colliders. arXiv:1808.10323 [hep-ph]
    S. Weinberg, Baryon and lepton nonconserving processes. Phys. Rev. Lett. 43, 1566–1570 (1979). https://doi.org/10.1103/PhysRevLett.43.1566 . Preprint HUTP-79-A050
    S. Antusch, E. Cazzato, O. Fischer, Sterile neutrino searches at future $$e^-e^+$$ e - e + , $$pp$$ pp , and $$e^-p$$ e - p colliders. Int. J. Mod. Phys. A 32(14), 1750078 (2017). https://doi.org/10.1142/S0217751X17500786 . arXiv:1612.02728 [hep-ph]
    P. Minkowski, $$\mu \rightarrow e\gamma $$ μ → e γ at a rate of one out of $$10^{9}$$ 10 9 muon decays? Phys. Lett. B 67, 421–428 (1977). https://doi.org/10.1016/0370-2693(77)90435-X . Preprint Print-77-0182 (BERN)
    M. Gell-Mann, P. Ramond, R. Slansky, Complex spinors and unified theories. Conf. Proc. C 790927, 315–321 (1979). arXiv:1306.4669 [hep-th], Preprint PRINT-80-0576
    T. Yanagida, Horizontal symmetry and masses of neutrinos. Conf. Proc. C 7902131, 95–99 (1979). Preprint KEK-79-18-95
    R.N. Mohapatra, G. Senjanovic, Neutrino mass and spontaneous parity violation. Phys. Rev. Lett. 44, 912 (1980). Preprint MDDP-TR-80-060, MDDP-PP-80-105, CCNY-HEP-79-10, https://doi.org/10.1103/PhysRevLett.44.912 [231 (1979)]
    D. Wyler, L. Wolfenstein, Massless neutrinos in left-right symmetric models. Nucl. Phys. B 218, 205–214 (1983). https://doi.org/10.1016/0550-3213(83)90482-0 . Preprint CERN-TH-3435
    M. Shaposhnikov, A possible symmetry of the nuMSM. Nucl. Phys. B 763, 49–59 (2007). https://doi.org/10.1016/j.nuclphysb.2006.11.003 . arXiv:hep-ph/0605047 [hep-ph], Preprint CERN-PH-TH-2006-079
    J. Kersten, AYu. Smirnov, Right-handed neutrinos at CERN LHC and the mechanism of neutrino mass generation. Phys. Rev. D 76, 073005 (2007). https://doi.org/10.1103/PhysRevD.76.073005 . arXiv:0705.3221 [hep-ph]
    M.B. Gavela, T. Hambye, D. Hernandez, P. Hernandez, Minimal flavour seesaw models. JHEP 09, 038 (2009). https://doi.org/10.1088/1126-6708/2009/09/038 . arXiv:0906.1461 [hep-ph], Preprint FTUAM-09-09, IFT-UAM-CSIC-09-27, ULB-TH-09-15, IFIC-09-22, FTUV-09-0607
    M. Malinsky, J.C. Romao, J.W.F. Valle, Novel supersymmetric SO(10) seesaw mechanism. Phys. Rev. Lett. 95, 161801 (2005). https://doi.org/10.1103/PhysRevLett.95.161801 . arXiv:hep-ph/0506296 [hep-ph], Preprint IFIC-05-28
    S. Antusch et al., Probing leptogenesis at future colliders. JHEP 124 (2018). https://link.springer.com/content/pdf/10.1007%2FJHEP09%282018%29124.pdf
    LHCb Collaboration, R. Aaij et al., Test of lepton universality with $$B^{0} \rightarrow K^{*0}\ell ^{+}\ell ^{-}$$ B 0 → K ∗ 0 ℓ + ℓ - decays. JHEP 08, 055 (2017). arXiv:1705.05802 [hep-ex], Preprint LHCB-PAPER-2017-013, CERN-EP-2017-100, https://doi.org/10.1007/JHEP08(2017)055
    B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias, J. Virto, Patterns of new physics in $$b\rightarrow s\ell ^+\ell ^-$$ b → s ℓ + ℓ - transitions in the light of recent data. JHEP 01, 093 (2018). https://doi.org/10.1007/JHEP01(2018)093 . arXiv:1704.05340 [hep-ph], Preprint PSI-PR-17-05, LPT-ORSAY-17-19
    W. Altmannshofer, P. Stangl, D.M. Straub, Interpreting hints for lepton flavor universality violation. Phys. Rev. D 96(5), 055008 (2017). https://doi.org/10.1103/PhysRevD.96.055008 . arXiv:1704.05435 [hep-ph]
    G. Hiller, I. Nisandzic, $$R_K$$ R K and $$R_{K^{\ast }}$$ R K * beyond the standard model. Phys. Rev. D 96(3), 035003 (2017). https://doi.org/10.1103/PhysRevD.96.035003 . arXiv:1704.05444 [hep-ph], Preprint DO-TH-17-04
    L.-S. Geng, B. Grinstein, S. Jäger, J. Martin Camalich, X.-L. Ren, R.-X. Shi, Towards the discovery of new physics with lepton-universality ratios of $$b\rightarrow s\ell \ell $$ b → s ℓ ℓ decays. Phys. Rev. D 96(9), 093006 (2017). https://doi.org/10.1103/PhysRevD.96.093006 . arXiv:1704.05446 [hep-ph], Preprint CERN-TH-2017-085
    M. Ciuchini, A.M. Coutinho, M. Fedele, E. Franco, A. Paul, L. Silvestrini, M. Valli, On flavourful easter eggs for new physics hunger and lepton flavour universality violation. Eur. Phys. J. C 77(10), 688 (2017). https://doi.org/10.1140/epjc/s10052-017-5270-2 . arXiv:1704.05447 [hep-ph]
    A. Celis, J. Fuentes-Martin, A. Vicente, J. Virto, Gauge-invariant implications of the LHCb measurements on lepton-flavor nonuniversality. Phys. Rev. D 96(3), 035026 (2017). https://doi.org/10.1103/PhysRevD.96.035026 . arXiv:1704.05672 [hep-ph], Preprint LMU-ASC-25-17, IFIC-17-20
    G. D’Amico, M. Nardecchia, P. Panci, F. Sannino, A. Strumia, R. Torre, A. Urbano, Flavour anomalies after the $$R_{K^*}$$ R K ∗ measurement. JHEP 09, 010 (2017). https://doi.org/10.1007/JHEP09(2017)010 . arXiv:1704.05438 [hep-ph], Preprint CERN-TH-2017-086, CP3-ORIGINS-2017-014
    L. Di Luzio, M. Nardecchia, What is the scale of new physics behind the $$B$$ B -flavour anomalies? Eur. Phys. J. C 77(8), 536 (2017). https://doi.org/10.1140/epjc/s10052-017-5118-9 . arXiv:1706.01868 [hep-ph], Preprint IPPP-17-50, CERN-TH-2017-126
    B.C. Allanach, B. Gripaios, T. You, The case for future hadron colliders from $$B \rightarrow K^{(*)} \mu ^+ \mu ^-$$ B → K ( ∗ ) μ + μ - decays. JHEP 03, 021 (2018). https://doi.org/10.1007/JHEP03(2018)021 . arXiv:1710.06363 [hep-ph], Preprint CAVENDISH-HEP-2017-11, DAMTP-2017-39
    B.C. Allanach, T. Corbett, M.J. Dolan, T. You, Hadron collider sensitivity to fat flavourful $$Z^\prime $$ Z ′ s for $$R_{K^{(\ast )}}$$ R K ( * ) . arXiv:1810.02166 [hep-ph], Preprint Cavendish-HEP-2018-14, DAMTP-2018-33
    A. Greljo, D. Marzocca, High- $$p_T$$ p T dilepton tails and flavor physics. Eur. Phys. J. C 77(8), 548 (2017). https://doi.org/10.1140/epjc/s10052-017-5119-8 . arXiv:1704.09015 [hep-ph], Preprint ZU-TH-12-17
    M. Kramer, T. Plehn, M. Spira, P.M. Zerwas, Pair production of scalar leptoquarks at the CERN LHC. Phys. Rev. D 71, 057503 (2005). https://doi.org/10.1103/PhysRevD.71.057503 . arXiv:hep-ph/0411038 [hep-ph], Preprint CERN-PH-TH-2004-207, DESY-04-200, EDINBURGH-2004-28, FERMILAB-PUB-04-298-T, PSI-PR-04-12
    I. Doršner, A. Greljo, Leptoquark toolbox for precision collider studies. JHEP 05, 126 (2018). https://doi.org/10.1007/JHEP05(2018)126 . arXiv:1801.07641 [hep-ph], Preprint MITP-18-005
    P. Arnan, L. Hofer, F. Mescia, A. Crivellin, Loop effects of heavy new scalars and fermions in $$b\rightarrow s\mu ^+\mu ^-$$ b → s μ + μ - . JHEP 04, 043 (2017). https://doi.org/10.1007/JHEP04(2017)043 . arXiv:1608.07832 [hep-ph], Preprint ICCUB-16-031, PSI-PR-16-12
    L. Di Luzio, M. Kirk, A. Lenz, Updated $$B_s$$ B s -mixing constraints on new physics models for $$b\rightarrow s\ell ^+\ell ^-$$ b → s ℓ + ℓ - anomalies. Phys. Rev. D 97(9), 095035 (2018). https://doi.org/10.1103/PhysRevD.97.095035 . arXiv:1712.06572 [hep-ph], Preprint IPPP-17-106
    J. Kumar, D. London, R. Watanabe, Combined Explanations of the $$b \rightarrow s \mu ^+ \mu ^-$$ b → s μ + μ - and $$b \rightarrow c \tau ^- {\bar{\nu }}$$ b → c τ - ν ¯ Anomalies: a General Model Analysis, arXiv:1806.07403 [hep-ph], Preprint UdeM-GPP-TH-18-264, UDEM-GPP-TH-18-264
    Z. Liu, L.-T. Wang, H. Zhang, Exotic decays of the 125 GeV Higgs boson at future $$e^+e^-$$ e + e - lepton colliders. Chin. Phys. C 41(6), 063102 (2017). https://doi.org/10.1088/1674-1137/41/6/063102 . arXiv:1612.09284 [hep-ph], Preprint FERMILAB-PUB-16-608-T
    D. Curtin, C.B. Verhaaren, Discovering uncolored naturalness in exotic Higgs decays. JHEP 12, 072 (2015). https://doi.org/10.1007/JHEP12(2015)072 . arXiv:1506.06141 [hep-ph]
    J. Liu, L.-T. Wang, X.-P. Wang, W. Xue, Exposing dark sector with future Z-factories. Phys. Rev. D 97(9), 095044 (2018). https://doi.org/10.1103/PhysRevD.97.095044 . arXiv:1712.07237 [hep-ph], Preprint CERN-TH-2017-278, EFI-17-28, MITP-17-102, MIT-CTP-4972
    CMS Collaboration, A.M. Sirunyan et al., Search for low mass vector resonances decaying into quark–antiquark pairs in proton–proton collisions at $$ \sqrt{s}=13 $$ s = 13 TeV. JHEP 01, 097 (2018). arXiv:1710.00159 [hep-ex], Preprint CMS-EXO-17-001, CERN-EP-2017-235, https://doi.org/10.1007/JHEP01(2018)097
    ATLAS Collaboration, M. Aaboud et al., Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet in proton–proton collisions at $$\sqrt{s}=13$$ s = 13 TeV with the ATLAS detector. arXiv:1801.08769 [hep-ex], Preprint CERN-EP-2017-280
    R.M. Harris, K. Kousouris, Searches for dijet resonances at hadron colliders. Int. J. Mod. Phys. A 26, 5005–5055 (2011). https://doi.org/10.1142/S0217751X11054905 . arXiv:1110.5302 [hep-ex], Preprint FERMILAB-PUB-11-567, CERN-OPEN-2011-044
    G. Salam, A. Weiler, Collider Reach. http://collider-reach.web.cern.ch/collider-reach/
    C. Helsens, D. Jamin, M.L. Mangano, T.G. Rizzo, M. Selvaggi, Heavy resonances at energy-frontier hadron colliders. arXiv:1902.11217 [hep-ph], Preprint CERN-TH-2019-020, SLAC-PUB-17408
    T.G. Rizzo, Exploring new gauge bosons at a 100 TeV collider. Phys. Rev. D 89(9), 095022 (2014). https://doi.org/10.1103/PhysRevD.89.095022 . arXiv:1403.5465 [hep-ph], Preprint SLAC-PUB-15917
    T. Han, P. Langacker, Z. Liu, L.-T. Wang, Diagnosis of a new neutral gauge boson at the LHC and ILC for Snowmass 2013. arXiv:1308.2738 [hep-ph]
    L. Randall, R. Sundrum, A large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370–3373 (1999). https://doi.org/10.1103/PhysRevLett.83.3370 . arXiv:hep-ph/9905221 [hep-ph], Preprint MIT-CTP-2860, PUPT-1860, BUHEP-99-9
    U. Baur, I. Hinchliffe, D. Zeppenfeld, Excited quark production at hadron colliders. Int. J. Mod. Phys. A 2, 1285 (1987). https://doi.org/10.1142/S0217751X87000661 . Preprint FERMILAB-CONF-87-102-T, MAD-PH-354, LBL-23645
    U. Baur, M. Spira, P.M. Zerwas, Excited quark and lepton production at hadron colliders. Phys. Rev. D 42, 815–824 (1990). https://doi.org/10.1103/PhysRevD.42.815 . Preprint MAD-PH-534, PITHA-89-26
    C.T. Hill, Topcolor assisted technicolor. Phys. Lett. B 345, 483–489 (1995). https://doi.org/10.1016/0370-2693(94)01660-5 . arXiv:hep-ph/9411426 [hep-ph], Preprint FERMILAB-PUB-94-395-T
    J. Jowett, HL-LHC physics workshop. CERN (2017). https://indico.cern.ch/event/647676/contributions/2721134/
    L. Apolinário, J.G. Milhano, G.P. Salam, C.A. Salgado, Probing the time structure of the quark-gluon plasma with top quarks. arXiv:1711.03105 [hep-ph], Preprint CERN-TH-2017-237
    D. d’Enterria, K. Krajczár, H. Paukkunen, Top-quark production in proton-nucleus and nucleus-nucleus collisions at LHC energies and beyond. Phys. Lett. B 746, 64–72 (2015). https://doi.org/10.1016/j.physletb.2015.04.044 . arXiv:1501.05879 [hep-ph]
    D. d’Enterria, Top-quark and Higgs boson perspectives at heavy-ion colliders. Nucl. Part. Phys. Proc. 289–290, 237–240 (2017). https://doi.org/10.1016/j.nuclphysbps.2017.05.053 . arXiv:1701.08047 [hep-ex]
    D. d’Enterria, C. Loizides, Higgs boson suppression in quark-gluon matter. arXiv:1809.06832 [hep-ph]
    Y. Liu, C.-M. Ko, Thermal production of charm quarks in heavy ion collisions at future circular collider. J. Phys. G 43(12), 125108 (2016). https://doi.org/10.1088/0954-3899/43/12/125108 . arXiv:1604.01207 [nucl-th]
    K. Zhou, Z. Chen, C. Greiner, P. Zhuang, Thermal charm and charmonium production in quark gluon plasma. Phys. Lett. B 758, 434–439 (2016). https://doi.org/10.1016/j.physletb.2016.05.051 . arXiv:1602.01667 [hep-ph]
    G.S. Denicol, C. Gale, S. Jeon, J.F. Paquet, B. Schenke, Effect of initial-state nucleon-nucleon correlations on collective flow in ultra-central heavy-ion collisions. arXiv:1406.7792 [nucl-th]
    CMS Collaboration, S. Chatrchyan et al., Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions. Phys. Lett. B 724, 213–240 (2013). arXiv:1305.0609 [nucl-ex], Preprint CMS-HIN-13-002, CERN-PH-EP-2013-077, https://doi.org/10.1016/j.physletb.2013.06.028
    ALICE Collaboration, B.B. Abelev et al., Long-range angular correlations of $$\pi $$ π , K and p in p-Pb collisions at $$\sqrt{s_{\rm NN}}$$ s NN = 5.02 TeV. Phys. Lett. B 726, 164–177 (2013). arXiv:1307.3237 [nucl-ex], Preprint CERN-PH-EP-2013-115, https://doi.org/10.1016/j.physletb.2013.08.024
    ALICE Collaboration, B. Abelev et al., Long-range angular correlations on the near and away side in $$p-\text{ Pb }$$ p - Pb collisions at $$\sqrt{s_{NN}}=5.02$$ s NN = 5.02 TeV. Phys. Lett. B 719, 29–41 (2013). arXiv:1212.2001 [nucl-ex], Preprint CERN-PH-EP-2012-359, https://doi.org/10.1016/j.physletb.2013.01.012
    ATLAS Collaboration, G. Aad et al., Measurement of long-range pseudorapidity correlations and azimuthal harmonics in $$\sqrt{s_{NN}}=5.02$$ s NN = 5.02 TeV proton–lead collisions with the ATLAS detector. Phys. Rev. C 90(4), 044906 (2014). arXiv:1409.1792 [hep-ex], Preprint CERN-PH-EP-2014-201, https://doi.org/10.1103/PhysRevC.90.044906
    STAR Collaboration, L. Adamczyk et al., Long-range pseudorapidity dihadron correlations in $$d+\text{ Au }$$ d + Au collisions at $$\sqrt{s_{\rm NN}}=200$$ s NN = 200 GeV. Phys. Lett. B 747, 265–271 (2015). arXiv:1502.07652 [nucl-ex], https://doi.org/10.1016/j.physletb.2015.05.075
    PHENIX Collaboration, A. Adare et al., Measurements of elliptic and triangular flow in high-multiplicity $$^{3}\text{ He }+\text{ Au }$$ 3 He + Au collisions at $$\sqrt{s_{_{NN}}}=200$$ s NN = 200 GeV. Phys. Rev. Lett. 115(14), 142301 (2015). arXiv:1507.06273 [nucl-ex], https://doi.org/10.1103/PhysRevLett.115.142301
    J.M. Campbell, R.K. Ellis, MCFM for the tevatron and the LHC. Nucl. Phys. Proc. Suppl. 205–206, 10–15 (2010). https://doi.org/10.1016/j.nuclphysbps.2010.08.011 . arXiv:1007.3492 [hep-ph], Preprint FERMILAB-CONF-10-244-T
    A.V. Baskakov, E.E. Boos, L.V. Dudko, I.P. Lokhtin, A.M. Snigirev, Single top quark production in heavy ion collisions at energies available at the CERN Large Hadron Collider. Phys. Rev. C 92(4), 044901 (2015). https://doi.org/10.1103/PhysRevC.92.044901 . arXiv:1502.04875 [hep-ph]
    J. Ghiglieri, U.A. Wiedemann, Thermal width of the Higgs boson in hot QCD matter. arXiv:1901.04503 [hep-ph], Preprint CERN-TH-2019-003
    J. Casalderrey-Solana, Y. Mehtar-Tani, C.A. Salgado, K. Tywoniuk, New picture of jet quenching dictated by color coherence. Phys. Lett. B 725, 357–360 (2013). https://doi.org/10.1016/j.physletb.2013.07.046 . arXiv:1210.7765 [hep-ph], Preprint CERN-PH-TH-2012-291, LU-TP-12-37
    A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions. Eur. Phys. J. C 76(3), 107 (2016). https://doi.org/10.1140/epjc/s10052-015-3819-5 . arXiv:1506.03981 [nucl-ex]
    ALICE Collaboration, J. Adam et al., Differential studies of inclusive $$\text{ J }/\psi $$ J / ψ and $$\psi $$ ψ (2S) production at forward rapidity in Pb–Pb collisions at $$ \sqrt{s_{{\rm NN}}}=2.76 $$ s NN = 2.76 TeV. JHEP 05, 179 (2016). arXiv:1506.08804 [nucl-ex], Preprint CERN-PH-EP-2015-157, https://doi.org/10.1007/JHEP05(2016)179
    ALICE Collaboration, J. Adam et al., Inclusive, prompt and non-prompt $$\text{ J }/\psi $$ J / ψ production at mid-rapidity in Pb–Pb collisions at $$\sqrt{s_{{\rm NN}}} = 2.76$$ s NN = 2.76 TeV. JHEP 07, 051 (2015). arXiv:1504.07151 [nucl-ex], Preprint CERN-PH-EP-2015-092, https://doi.org/10.1007/JHEP07(2015)051
    CMS Collaboration, S. Chatrchyan et al., Suppression of non-prompt $$\text{ J }/\psi $$ J / ψ , prompt $$\text{ J }/\psi $$ J / ψ , and $$\Upsilon $$ Υ in PbPb collisions at $$\sqrt{s_{{\rm NN}}}$$ s NN = 2.76 TeV. JHEP 05, 063 (2012). arXiv:1201.5069 [nucl-ex], Preprint CMS-HIN-10-006, CERN-PH-EP-2011-170, https://doi.org/10.1007/JHEP05(2012)063
    Y.-P. Liu, Z. Qu, N. Xu, P.-F. Zhuang, $$J/\psi $$ J / ψ transverse momentum distribution in high energy nuclear collisions at RHIC. Phys. Lett. B 678, 72 (2009). https://doi.org/10.1016/j.physletb.2009.06.006 . arXiv:0901.2757 [nucl-th]
    X. Zhao, R. Rapp, Medium modifications and production of charmonia at LHC. Nucl. Phys. A 859, 114 (2011). https://doi.org/10.1016/j.nuclphysa.2011.05.001 . arXiv:1102.2194 [hep-ph]
    A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, The thermal model on the verge of the ultimate test: particle production in Pb-Pb collisions at the LHC. J. Phys. G 38, 124081 (2011). https://doi.org/10.1088/0954-3899/38/12/124081 . arXiv:1106.6321 [nucl-th]
    P. Braun-Munzinger, Workshop on heavy ions at FCC (2015). https://indico.cern.ch/event/382529/contribution/6
    A. Andronic, Workshop on heavy ions at FCC (2013). https://indico.cern.ch/event/288576/contribution/7
    M.L. Mangano, P. Nason, G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order. Nucl. Phys. B 373, 295–345 (1992). https://doi.org/10.1016/0550-3213(92)90435-E . Preprint IFUP-TH-32-91, UPRF-91-308, GEF-TH-10-1991A
    L.V. Gribov, E.M. Levin, M.G. Ryskin, Semihard processes in QCD. Phys. Rep. 100, 1–150 (1983). https://doi.org/10.1016/0370-1573(83)90022-4
    A.H. Mueller, J.-W. Qiu, Gluon recombination and shadowing at small values of x. Nucl. Phys. B 268, 427 (1986). https://doi.org/10.1016/0550-3213(86)90164-1 . Preprint CU-TP-322
    M. Arneodo, Nuclear effects in structure functions. Phys. Rep. 240, 301–393 (1994). https://doi.org/10.1016/0370-1573(94)90048-5 . Preprint CERN-PPE-92-113
    F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, The color glass condensate. Annu. Rev. Nucl. Part. Sci. 60, 463–489 (2010). https://doi.org/10.1146/annurev.nucl.010909.083629 . arXiv:1002.0333 [hep-ph]
    A. Accardi et al., Electron ion collider: the next QCD frontier. Eur. Phys. J. A 52(9), 268 (2016). https://doi.org/10.1140/epja/i2016-16268-9 . arXiv:1212.1701 [nucl-ex], Preprint BNL-98815-2012-JA, JLAB-PHY-12-1652
    A.H. Rezaeian, Semi-inclusive photon-hadron production in pp and pA collisions at RHIC and LHC. Phys. Rev. D 86, 094016 (2012). https://doi.org/10.1103/PhysRevD.86.094016 . arXiv:1209.0478 [hep-ph]
    A.H. Rezaeian, CGC predictions for p+A collisions at the LHC and signature of QCD saturation. Phys. Lett. B 718, 1058–1069 (2013). https://doi.org/10.1016/j.physletb.2012.11.066 . arXiv:1210.2385 [hep-ph]
    J.L. Albacete, C. Marquet, Azimuthal correlations of forward di-hadrons in d+Au collisions at RHIC in the color glass condensate. Phys. Rev. Lett. 105, 162301 (2010). https://doi.org/10.1103/PhysRevLett.105.162301 . arXiv:1005.4065 [hep-ph]
    A. van Hameren, P. Kotko, K. Kutak, C. Marquet, S. Sapeta, Saturation effects in forward-forward dijet production in $$\text{ p }+\text{ Pb }$$ p + Pb collisions. Phys. Rev. D 89(9), 094014 (2014). https://doi.org/10.1103/PhysRevD.89.094014 . arXiv:1402.5065 [hep-ph], Preprint CERN-PH-TH-2014-029, CPHT-RR005.0214, IFJPAN-IV-2014-2
    P. Kotko, K. Kutak, C. Marquet, E. Petreska, S. Sapeta, A. van Hameren, Improved TMD factorization for forward dijet production in dilute-dense hadronic collisions. JHEP 09, 106 (2015). https://doi.org/10.1007/JHEP09(2015)106 . arXiv:1503.03421 [hep-ph], Preprint CERN-PH-TH-2015-045, CPHT-RR005.0315, IFJPAN-IV-2015-2
    K.J. Eskola, H. Paukkunen, C.A. Salgado, EPS09: a new generation of NLO and LO nuclear parton distribution functions. JHEP 04, 065 (2009). https://doi.org/10.1088/1126-6708/2009/04/065 . arXiv:0902.4154 [hep-ph]
    H. Paukkunen, P. Zurita, PDF reweighting in the Hessian matrix approach. JHEP 12, 100 (2014). https://doi.org/10.1007/JHEP12(2014)100 . arXiv:1402.6623 [hep-ph]
    C.F. von Weizsacker, Radiation emitted in collisions of very fast electrons. Z. Phys. 88, 612–625 (1934). https://doi.org/10.1007/BF01333110
    E.J. Williams, Nature of the high-energy particles of penetrating radiation and status of ionization and radiation formulae. Phys. Rev. 45, 729–730 (1934). https://doi.org/10.1103/PhysRev.45.729
    E. Fermi, On the theory of collisions between atoms and electrically charged particles. Nuovo Cim. 2, 143–158 (1925). arXiv:hep-th/0205086 [hep-th], https://doi.org/10.1007/BF02961914 , [243 (1925)]
    D. d’Enterria, M. Klasen, K. Piotrzkowski, High-energy photon collisions at the LHC. Nucl. Phys. Proc. Suppl. B 179, 1 (2008). https://doi.org/10.1016/S0920-5632(08)00090-X . Preprint PHOTON-LHC-2008
    A.J. Baltz, The physics of ultraperipheral collisions at the LHC. Phys. Rep. 458, 1–171 (2008). https://doi.org/10.1016/j.physrep.2007.12.001 . arXiv:0706.3356 [nucl-ex]
    H1 Collaboration, A. Atkas et al., Elastic photoproduction of $$J/\psi $$ J / ψ and $$\Upsilon $$ Υ mesons at HERA. Phys. Lett. B 483, 23 (2000). arXiv:hep-ex/0003020 [hep-ex], https://doi.org/10.1016/S0370-2693(00)00530-X
    ZEUS Collaboration, S. Chekanov et al., Exclusive photoproduction of $$\Upsilon $$ Υ mesons at HERA. Phys. Lett. B 680, 4 (2009). arXiv:0903.4205 [hep-ex], https://doi.org/10.1016/physlettb.2009.07.066
    P. Jones, D. Martin, M.G. Ryskin, T. Teubner, Probes of the small x gluon via exclusive $$J/\psi $$ J / ψ and $$\Upsilon $$ Υ production at HERA and LHC. JHEP 1311, 085 (2013). https://doi.org/10.1007/JHEP11(2013)085 . arXiv:1307.7099 [hep-ph]
    G. Sampaio, M.V.T. Machado, Exclusive photoproduction of quarkonium in proton–nucleus collisions at the LHC. arXiv:1312.0770 [hep-ph]
    N. Armesto, Nuclear PDFs, Talk at the 2nd FCC Physics Week (2018). https://indico.cern.ch/event/618254/contributions/2833211/
    N. Armesto, Future of nuclear PDFs, Proceedings of DIS2018 (2018). https://indico.cern.ch/event/656250/contributions/2889208/
    N. Armesto, Nuclear physics in eA collisions. POS DIS2017, 107 (2017)
    K.J. Eskola, P. Paakkinen, H. Paukkunen, C.A. Salgado, EPPS16: nuclear parton distributions with LHC data. Eur. Phys. J. C 77(3), 163 (2017). https://doi.org/10.1140/epjc/s10052-017-4725-9 . arXiv:1612.05741 [hep-ph]
    L. Frankfurt, V. Guzey, M. Strikman, Leading twist nuclear shadowing phenomena in hard processes with nuclei. Phys. Rep. 512, 255–393 (2012). https://doi.org/10.1016/j.physrep.2011.12.002 . arXiv:1106.2091 [hep-ph], Preprint JLAB-THY-11-1379
    T. Lappi, H. Mantysaari, Incoherent diffractive J/Psi-production in high energy nuclear DIS. Phys. Rev. C 83, 065202 (2011). https://doi.org/10.1103/PhysRevC.83.065202 . arXiv:1011.1988 [hep-ph], Preprint INT-PUB-10-061
    M. Klein, Nuclear parton distributions with the LHeC. EPJ Web Conf. 112, 03002 (2016). https://doi.org/10.1051/epjconf/201611203002
    H. Mantysaari, B. Schenke, Confronting impact parameter dependent JIMWLK evolution with HERA data. arXiv:1806.06783 [hep-ph]
    D. d’Enterria, D.E. Martins, P. Rebello Teles, Prospects for $$\gamma \gamma \rightarrow $$ γ γ → Higgs observation in ultraperipheral ion collisions at the future circular collider. arXiv:1712.10104 [hep-ph]
    CMS Collaboration, S. Chatrchyan et al., Search for exclusive or semi-exclusive photon pair production and observation of exclusive and semi-exclusive electron pair production in $$pp$$ pp collisions at $$\sqrt{s}=7$$ s = 7 TeV. JHEP 11, 080 (2012). arXiv:1209.1666 [hep-ex], Preprint CMS-FWD-11-004, CERN-PH-EP-2012-246, https://doi.org/10.1007/JHEP11(2012)080
    CMS Collaboration, S. Chatrchyan et al., Study of exclusive two-photon production of $$W^+W^-$$ W + W - in $$pp$$ pp collisions at $$\sqrt{s} = 7$$ s = 7 TeV and constraints on anomalous quartic gauge couplings. JHEP 07, 116 (2013). arXiv:1305.5596 [hep-ex], Preprint CMS-FSQ-12-010, CERN-PH-EP-2013-084, https://doi.org/10.1007/JHEP07(2013)116
    ALICE Collaboration, E. Abbas et al., Charmonium and $$e^+e^-$$ e + e - pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at $$\sqrt{s_{\rm NN}}=2.76$$ s NN = 2.76  TeV. Eur. Phys. J. C 73(11), 2617 (2013). arXiv:1305.1467 [nucl-ex], Preprint CERN-PH-EP-2013-066, https://doi.org/10.1140/epjc/s10052-013-2617-1
    ATLAS Collaboration, G. Aad et al., Measurement of exclusive $$\gamma \gamma \rightarrow \ell ^+\ell ^-$$ γ γ → ℓ + ℓ - production in proton–proton collisions at $$\sqrt{s} = 7$$ s = 7 TeV with the ATLAS detector. Phys. Lett. B 749, 242–261 (2015). arXiv:1506.07098 [hep-ex], Preprint CERN-PH-EP-2015-134, https://doi.org/10.1016/j.physletb.2015.07.069
    ATLAS Collaboration, M. Aaboud et al., Evidence for light-by-light scattering in heavy-ion collisions with the ATLAS detector at the LHC. Nat. Phys. 13(9), 852–858 (2017). arXiv:1702.01625 [hep-ex], Preprint CERN-EP-2016-316, https://doi.org/10.1038/nphys4208
    CMS Collaboration, Measurement of light-by-light scattering in ultraperipheral PbPb collisions at $$\sqrt{s_{{\rm NN}}} = 5.02$$ s NN = 5.02  TeV. CMS-PAS-FSQ-16-012, CERN, Geneva, 2018, Preprint CMS-PAS-FSQ-16-012, https://cds.cern.ch/record/2319158
    D. d’Enterria, G.G. da Silveira, Observing light-by-light scattering at the large hadron collider. Phys. Rev. Lett. 111, 080405 (2013). https://doi.org/10.1103/PhysRevLett.111.080405 . arXiv:1305.7142 [hep-ph]
    D. d’Enterria, G.G. da Silveira, Measuring light-by-light scattering at the LHC and FCC, in Proceedings, 16th conference on Elastic and Diffractive Scattering (EDS BLOIS 2015) (2016). arXiv:1602.08088 [hep-ph], https://inspirehep.net/record/1424257/files/arXiv:1602.08088.pdf
    G.J. Gounaris, P.I. Porfyriadis, F.M. Renard, The $$\gamma \gamma $$ γ γ to $$\gamma \gamma $$ γ γ process in the standard and SUSY models at high-energies. Eur. Phys. J. C 9, 673–686 (1999). https://doi.org/10.1007/s100529900079 . arXiv:hep-ph/9902230 [hep-ph], Preprint PM-99-04, THES-TP-99-01
    I.F. Ginzburg, A. Schiller, Search for a heavy magnetic monopole at the Tevatron and CERN LHC. Phys. Rev. D 57, 6599–6603 (1998). https://doi.org/10.1103/PhysRevD.57.6599 . arXiv:hep-ph/9802310 [hep-ph], Preprint UL-NTZ-02-98
    D. Bernard, On the potential of light by light scattering for invisible axion detection. Nuovo Cim. A 110, 1339–1346 (1997). Preprint X-LPNHE-97-12
    D. Bernard, On the potential of light by light scattering for invisible axion detection. Nucl. Phys. Proc. Suppl. 72, 201 (1999)
    T. Kikuchi, N. Okada, M. Takeuchi, Unparticle physics at the photon collider. Phys. Rev. D 77, 094012 (2008). https://doi.org/10.1103/PhysRevD.77.094012 . arXiv:0801.0018 [hep-ph], Preprint KEK-TH-1202
    K.-M. Cheung, Diphoton signals for low scale gravity in extra dimensions. Phys. Rev. D 61, 015005 (2000). https://doi.org/10.1103/PhysRevD.61.015005 . arXiv:hep-ph/9904266 [hep-ph], Preprint UCD-HEP-99-8
    J.L. Hewett, F.J. Petriello, T.G. Rizzo, Signals for noncommutative interactions at linear colliders. Phys. Rev. D 64, 075012 (2001). https://doi.org/10.1103/PhysRevD.64.075012 . arXiv:hep-ph/0010354 [hep-ph], Preprint SLAC-PUB-8635, FERMILAB-PUB-00-286-T
    J.P. Lansberg, R.E. Mikkelsen, U.I. Uggerhoej, Near-threshold production of $$W^\pm $$ W ± , $$Z^0$$ Z 0 and $$H^0$$ H 0 at a fixed-target experiment at the future ultra-high-energy proton colliders. Adv. High Energy Phys. 2015, 249167 (2015). https://doi.org/10.1155/2015/249167 . arXiv:1507.01438 [hep-ex]
    S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg, Physics opportunities of a fixed-target experiment using the LHC beams. Phys. Rep. 522, 239–255 (2013). https://doi.org/10.1016/j.physrep.2012.10.001 . arXiv:1202.6585 [hep-ph], Preprint SLAC-PUB-14878
    P. Azzurri et al., Physics behind precision. arXiv:1703.01626 [hep-ph]
    M. Mangano, Physics at the FCC-hh, a 100 TeV pp collider. arXiv:1710.06353 [hep-ph], Preprint CERN-2017-003-M, https://doi.org/10.23731/CYRM-2017-003

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020