Exportar registro bibliográfico


Metrics:

Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis (2019)

  • Authors:
  • USP affiliated author: ALMEIDA, FEDERICO DAVID BROWN - IB
  • School: IB
  • DOI: 10.1186/s13227-019-0116-7
  • Subjects: ZOOLOGIA (CLASSIFICAÇÃO); BIOLOGIA MARINHA; COLÔNIAS (BIOLOGIA); BLASTOGÊNESE ANIMAL; TUNICATA
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: EvoDevo
    • ISSN: 2041-9139
    • Volume/Número/Paginação/Ano: v. 10, n. 3, mar. 2019
  • Versão PublicadaOnline source accessDOI
    Informações sobre o DOI: 10.1186/s13227-019-0116-7 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    Download do texto completo

    Tipo Nome Link
    Versão Publicada2969293.pdfDirect link
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PRÜNSTER, Maria Mandela; RICCI, Lorenzo; BROWN, Federico D; TIOZZO, Stefano. Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis. EvoDevo, Gray's Inn Rd, v. 10, n. 3, 2019. Disponível em: < https://doi.org/10.1186/s13227-019-0116-7 > DOI: 10.1186/s13227-019-0116-7.
    • APA

      Prünster, M. M., Ricci, L., Brown, F. D., & Tiozzo, S. (2019). Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis. EvoDevo, 10( 3). doi:10.1186/s13227-019-0116-7
    • NLM

      Prünster MM, Ricci L, Brown FD, Tiozzo S. Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis [Internet]. EvoDevo. 2019 ; 10( 3):Available from: https://doi.org/10.1186/s13227-019-0116-7
    • Vancouver

      Prünster MM, Ricci L, Brown FD, Tiozzo S. Modular co-option of cardiopharyngeal genes during non-embryonic myogenesis [Internet]. EvoDevo. 2019 ; 10( 3):Available from: https://doi.org/10.1186/s13227-019-0116-7

    Referências citadas na obra
    Hooper SL. Invertebrate muscles: muscle specific genes and proteins. Physiol Rev. 2005;85:1001–60.
    Bernadskaya Y, Christiaen L. Transcriptional control of developmental cell behaviors. Annu Rev Cell Dev Biol. 2016. https://doi.org/10.1146/annurev-cellbio-111315-125218 .
    Buckingham M. Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle. Proc Natl Acad Sci. 2017;114:5830–7.
    Diogo R, et al. A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature. 2015;520:466–73.
    Gopalakrishnan S, et al. A cranial mesoderm origin for esophagus striated muscles. Dev Cell. 2015;34:694–704.
    Diogo R, Ziermann JM. Development, metamorphosis, morphology, and diversity: the evolution of chordate muscles and the origin of vertebrates. Dev Dyn. 2015;244:1046–57.
    Harel I, et al. Pharyngeal mesoderm regulatory network controls cardiac and head muscle morphogenesis. Proc Natl Acad Sci U S A. 2012;109:18839–44.
    Mandal A, Holowiecki A, Song YC, Waxman JS. Wnt signaling balances specification of the cardiac and pharyngeal muscle fields. Mech Dev. 2017;143:32–41.
    Koop D, et al. Roles of retinoic acid and Tbx1/10 in pharyngeal segmentation: amphioxus and the ancestral chordate condition. Evodevo. 2014;5:1–16.
    Gillis JA, Fritzenwanker JH, Lowe CJ. A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. Proc R Soc B Biol Sci. 2012;279:237–46.
    Cebrià F. Planarian body-wall muscle: regeneration and function beyond a simple skeletal support. Front Cell Dev Biol. 2016;4:1–10.
    Konstantinides N, Averof M. A common cellular basis for muscle regeneration in arthropods and vertebrates. Science. 2014;343:788–91.
    Kragl M, et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature. 2009;460:60–5.
    Alié A, et al. Somatic stem cells express Piwi and Vasa genes in an adult ctenophore: ancient association of ‘germline genes’ with stemness. Dev Biol. 2011;350:183–97.
    Moran NA. Adaptation and constraint in the complex life cycles of animals. Annu Rev Ecol Syst. 1994;25:573–600.
    Chanoine C, Hardy S. Xenopus muscle development: from primary to secondary myogenesis. Dev Dyn. 2003;226:12–23.
    Bothe I, Baylies MK. Drosophila myogenesis. Curr Biol. 2016;26:R786–91.
    Wanninger A. Evolutionary developmental biology of invertebrates, vol. 6., DeuterostomiaHeidelberg: Springer; 2015.
    Lemaire P. Unfolding a chordate developmental program, one cell at a time: invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Dev Biol. 2009;332:48–60.
    Degasperi V, et al. Muscle differentiation in a colonial ascidian: organisation, gene expression and evolutionary considerations. BMC Dev Biol. 2009;9:48.
    Satou Y, et al. Gene expression profiles in Ciona intestinalis tailbud embryos. Development. 2001;128:2893–904.
    Chiba S, et al. A genomewide survey of developmentally relevant genes in Ciona intestinalis. IX. Genes for muscle structural proteins. Dev Genes Evol. 2003;213:291–302.
    Bates WR. Cellular features of an apoptotic form of programmed cell death during the development of the ascidian, Boltenia villosa. Zool Sci. 2004;21:553–63.
    Tiozzo S, Murray M, Degnan BM, De Tomaso AW, Croll RP. Development of the neuromuscular system during asexual propagation in an invertebrate chordate. Dev Dyn. 2009;238:2081–94.
    Nishida H, Sawada K. macho-1 encodes a localized mRNA in ascidian eggs that specifies muscle fate during embryogenesis. Nature. 2001;409:724–9.
    Kugler JE, et al. Temporal regulation of the muscle gene cascade by Macho1 and Tbx6 transcription factors in Ciona intestinalis. J Cell Sci. 2010;123:2453–63.
    Christiaen L, Stolfi A, Davidson B, Levine M. Spatio-temporal intersection of Lhx3 and Tbx6 defines the cardiac field through synergistic activation of Mesp. Dev Biol. 2009;328:552–60.
    Davidson B. Ciona intestinalis as a model for cardiac development. Semin Cell Dev Biol. 2007;18:16–26.
    Wang W, Razy-Krajka F, Siu E, Ketcham A, Christiaen L. NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol. 2013;11:e1001725.
    Stolfi A, et al. Early chordate origins of the vertebrate second heart field. Science. 2010;329:565–8.
    Tolkin T, Christiaen L. Rewiring of an ancestral Tbx1/10-Ebf-Mrf network for pharyngeal muscle specification in distinct embryonic lineages. Development. 2016;143:3852–62.
    Manni L, Burighel P. Common and divergent pathways in alternative developmental processes of ascidians. BioEssays. 2006;28:902–12.
    Ricci L, Cabrera F, Lotito S, Tiozzo S. Redeployment of germ layers related TFs shows regionalized expression during two non-embryonic developments. Dev Biol. 2016;416:235–48.
    Manni L, et al. Ontology for the asexual development and anatomy of the colonial chordate Botryllus schlosseri. PLoS ONE. 2014;9:e96434.
    Rodriguez D, et al. Analysis of the basal chordate Botryllus schlosseri reveals a set of genes associated with fertility. BMC Genom. 2014;15:1183.
    Ricci L, et al. Identification of differentially expressed genes from multipotent epithelia at the onset of an asexual development. Sci Rep. 2016;6:27357.
    Schiaffino S, Burighel P, Nunzi MG. Involution of the caudal musculature during metamorphosis in the ascidian, Botryllus schlosseri. Cell Tissue Res. 1974;153:293–305.
    Tolkin T, Christiaen L. Development and evolution of the ascidian cardiogenic mesoderm. In: Schatten GP, editor. Current topics in developmental biology 100. Amsterdam: Elsevier; 2012.
    Cloney RA. Ascidian larvae and the events of metamorphosis. Integr Comp Biol. 1982;22:817–26.
    Kaplan N, Razy-Krajka F, Christiaen L. Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from simple chordates. Curr Opin Genet Dev. 2015;32:119–28.
    Milkman R. Genetic and developmental studies on Botryllus schlosseri. Biol Bull. 1967;132:229–43.
    Brown FD, Swalla BJ. Evolution and development of budding by stem cells: ascidian coloniality as a case study. Dev Biol. 2012;369:151–62.
    Razy-Krajka F, et al. Collier/OLF/EBF-dependent transcriptional dynamics control pharyngeal muscle specification from primed cardiopharyngeal progenitors. Dev Cell. 2014;29:263–76.
    Nishida H. The maternal muscle determinant in the ascidian egg. Wiley Interdiscip Rev Dev Biol. 2012;1:425–33.
    Sawada K, Fukushima Y, Nishida H. Macho-1 functions as transcriptional activator for muscle formation in embryos of the ascidian Halocynthia roretzi. Gene Expr Patterns. 2005;5:429–37.
    Kumano G, Negoro N, Nishida H. Transcription factor Tbx6 plays a central role in fate determination between mesenchyme and muscle in embryos of the ascidian, Halocynthia roretzi. Dev Growth Differ. 2014;56:310–22.
    Stolfi A, et al. Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. Elife. 2014;3:1–28.
    Gyoja F. Expression of a muscle determinant gene, macho-1, in the anural ascidian Molgula tectiformis. Dev Genes Evol. 2006;216:285–9.
    Berrill NJ. The developmental cycle of Botrylloides. Q J Microsc Sci. 1947;88:393–407.
    Prünster MM, Ricci L, Brown FD, Tiozzo S. De novo neurogenesis in a budding chordate: co-option of larval anteroposterior patterning genes in a transitory neurogenic organ. Dev Biol. 2018. https://doi.org/10.1016/j.ydbio.2018.10.009
    Kobayashi K. Maternal macho-1 is an intrinsic factor that makes cell response to the same FGF signal differ between mesenchyme and notochord induction in ascidian embryos. Development. 2003;130:5179–90.
    Burighel P, Lane NJ, Zaniolo G, Manni L. Neurogenic role of the neural gland in the development of the ascidian, Botryllus schlosseri (Tunicata, Urochordata). J Comp Neurol. 1998;394:230–41.
    Sköld HN, Stach T, Bishop JDD, Herbst E, Thorndyke MC. Pattern of cell proliferation during budding in the colonial ascidian Diplosoma listerianum. Biol Bull. 2011;221:126–36.
    Alié A, Hiebert LS, Simion P, Scelzo M, Prünster MM, Lotito S, Delsuc F, Douzery EJP, Dantec C, Lemaire P, Darras S, Kawamura K, Brown FD, Tiozzo S. Convergent acquisition of nonembryonic development in styelid ascidians. Mol Biol Evol. 2018;35(7):1728–43. https://doi.org/10.1093/molbev/msy068 .
    Nunzi MG, Burighel P, Schiaffino S. Muscle cell differentiation in the ascidian heart. Dev Biol. 1979;380:371–80.
    Berrill NJ. The development of the bud in Botryllus. Biol Bull. 1941;80:169–84.
    Langenbacher AD, Rodriguez D, Di Maio A, De Tomaso AW. Whole-mount fluorescent in situ hybridization staining of the colonial tunicate Botryllus schlosseri. Genesis. 2015;53:194–201.
    Lauzon RJ, Kidder SJ, Long P. Suppression of programmed cell death regulates the cyclical degeneration of organs in a colonial urochordate. Dev Biol. 2007;301:92–105.
    Conklin EG. Mosaic development in ascidian eggs. J Exp Zool. 1905;2:145–223.
    Guindon S, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21.
    Christiaen L, Wagner E, Shi W, Levine M. Whole-mount in situ hybridization on sea squirt (Ciona intestinalis) embryos. Cold Spring Harb Protoc. 2009;4:pdb–prot5348.
    Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.
    Lauzon RJ, Ishizuka KJ, Weissman IL. Cyclical generation and degeneration of organs in a colonial urochordate involves crosstalk between old and new: a model for development and regeneration. Dev Biol. 2002;249:333–48.
    Chan SSK, et al. Development of bipotent cardiac/skeletal myogenic progenitors from MESP1 + mesoderm. Stem Cell Rep. 2016;6:26–34.
    Sambasivan R, et al. Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell. 2009;16:810–21.
    Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91:1447–531.
    Grifone R, et al. Properties of branchiomeric and somite-derived muscle development in Tbx1 mutant embryos. Dev Dyn. 2008;237:3071–8.
    Desjardins C, Naya F. The FUnction of the MEF2 family of transcription factors in cardiac development, cardiogenomics, and direct reprogramming. J Cardiovasc Dev Dis. 2016;3:26.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020