Exportar registro bibliográfico


Retinal alterations in a pre-clinical model of an autism spectrum disorder (2019)

  • Authors:
  • Unidades: IP; ICB; ICB; ICB
  • DOI: 10.1186/s13229-019-0270-8
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.1186/s13229-019-0270-8 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SOUZA, Elisa Maria Guimarães de; JOSELEVITCH, Christina; BRITTO, Luiz Roberto Giorgetti de; CHIAVEGATTO, Silvana. Retinal alterations in a pre-clinical model of an autism spectrum disorder. Molecular Autism, London, BioMed Central Ltd, v. 10, p. 16 , 2019. Disponível em: < https://doi.org/10.1186/s13229-019-0270-8 > DOI: 10.1186/s13229-019-0270-8.
    • APA

      Souza, E. M. G. de, Joselevitch, C., Britto, L. R. G. de, & Chiavegatto, S. (2019). Retinal alterations in a pre-clinical model of an autism spectrum disorder. Molecular Autism, 10, 16 . doi:10.1186/s13229-019-0270-8
    • NLM

      Souza EMG de, Joselevitch C, Britto LRG de, Chiavegatto S. Retinal alterations in a pre-clinical model of an autism spectrum disorder [Internet]. Molecular Autism. 2019 ; 10 16 .Available from: https://doi.org/10.1186/s13229-019-0270-8
    • Vancouver

      Souza EMG de, Joselevitch C, Britto LRG de, Chiavegatto S. Retinal alterations in a pre-clinical model of an autism spectrum disorder [Internet]. Molecular Autism. 2019 ; 10 16 .Available from: https://doi.org/10.1186/s13229-019-0270-8

    Referências citadas na obra
    Lord C, Elsabbagh M, Baird G, Veenstra-Vanderweele J. Autism spectrum disorder. Lancet. 2018. https://doi.org/10.1016/S0140-6736(18)31129-2 .
    Ornoy A, Weinstein-Fudim L, Ergaz Z. Genetic syndromes, maternal diseases and antenatal factors associated with autism spectrum disorders (ASD). Front Neurosci. 2016. https://doi.org/10.3389/fnins.2016.00316 .
    De La Torre-Ubieta L, Won H, Stein JL, Geschwind DH. Advancing the understanding of autism disease mechanisms through genetics. Nat Med. 2016. https://doi.org/10.1038/nm.4071 .
    Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron. 2015. https://doi.org/10.1016/j.neuron.2015.07.033 .
    Zhubi A, Chen Y, Dong E, Cook EH, Guidotti A, Grayson DR. Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum. Transl Psychiatry. 2014. https://doi.org/10.1038/tp.2013.123 .
    Chaste P, Leboyer M. Autism risk factors: genes, environment, and gene-environment interactions. Dialogues Clin Neurosci. 2012;14(3):281–92.
    Lambert PA, Carraz G, Borselli S, Bouchardy M. Dipropylacetamide in the treatment of manic-depressive psychosis. Encephale. 1975;1(1):25–31.
    Emrich HM, von Zerssen D, Kissling W, Möller HJ, Windorfer A. Effect of sodium valproate on mania. The GABA-hypothesis of affective disorders. Arch Psychiatr Nervenkr. 1980. https://doi.org/10.1007/BF00343800 .
    Gottfried C, Bambini-Júnior V, Baronio D, Zanatta G, Silvestrin RB, Vaccaro T, Riesgo R. Valproic Acid in Autism Spectrum Disorder: From an Environmental Risk Factor to a Reliable Animal Model, Recent Advances in Autism Spectrum Disorders - Volume I, Michael Fitzgerald, IntechOpen. (March 6th 2013). Available from: https://www.intechopen.com/books/recent-advances-in-autism-spectrum-disorders-volume-i/valproic-acid-in-autism-spectrum-disorder-from-an-environmental-risk-factor-to-a-reliable-animal-mod .
    Bruckner A, Lee YJ, O'Shea KS, Henneberry RC. Teratogenic effects of valproic acid and diphenylhydantoin on mouse embryos in culture. Teratology. 1983. https://doi.org/10.1002/tera.1420270106 .
    Jentink J, Loane MA, Dolk H, Barisic I, Garne E, Morris JK, et al. Valproic acid monotherapy in pregnancy and major congenital malformations. N Engl J Med. 2011. https://doi.org/10.1056/NEJMoa0907328 .
    Wagner GC, Reuhl KR, Cheh M, McRae P, Halladay AK. A new neurobehavioral model of autism in mice: pre- and postnatal exposure to sodium valproate. J Autism Dev Disord. 2006. https://doi.org/10.1007/s10803-006-0117-y .
    Nicolini C, Fahnestock M. The valproic acid-induced rodent model of autism. Exp Neurol. 2017. https://doi.org/10.1016/j.expneurol.2017.04.017 .
    Mabunga DF, Gonzales EL, Kim JW, Kim KC, Shin CY. Exploring the validity of valproic acid animal model of autism. Exp Neurobiol. 2015. https://doi.org/10.5607/en.2015.24.4.285 .
    Tavassoli T, Miller LJ, Schoen SA, Nielsen DM, Baron-Cohen S. Sensory over-responsivity in adults with autism spectrum conditions. Autism. 2014. https://doi.org/10.1177/1362361313477246 .
    Stiegler LN, Davis R. Understanding sound sensitivity in individuals with autism spectrum disorders. Focus Autism Other Devel Disabil. 2010. https://doi.org/10.1177/1088357610364530 .
    Blakemore SJ, Tavassoli T, Calò S, Thomas RM, Catmur C, Frith U, et al. Tactile sensitivity in Asperger syndrome. Brain Cogn. 2006. https://doi.org/10.1016/j.bandc.2005.12.013 .
    Tavassoli T, Baron-Cohen S. Taste identification in adults with autism spectrum conditions. J Autism Dev Disord. 2012. https://doi.org/10.1007/s10803-011-1377-8 .
    Little JA. Vision in children with autism spectrum disorder: a critical review. Clin Exp Optom. 2018. https://doi.org/10.1111/cxo.12651 .
    Campbell K, Carpenter KL, Hashemi J, Espinosa S, Marsan S, Borg JS, et al. Computer vision analysis captures atypical attention in toddlers with autism. Autism. 2018. https://doi.org/10.1177/1362361318766247 .
    Wu SM. Synaptic organization of the vertebrate retina: general principles and species-specific variations: the Friedenwald lecture. Invest Ophthalmol Vis Sci. 2010. https://doi.org/10.1167/iovs.09-4396 .
    Schneider M. Adolescence as a vulnerable period to alter rodent behavior. Cell Tissue Res. 2013. https://doi.org/10.1007/s00441-013-1581-2 .
    Shimizu S. Routes of administration. In: Hedrich HJ, Bullock G, editors. The laboratory mouse. Amsterdam: Elsevier Ltd; 2004. p. 527–42.
    Schneider T, Przewlocki R. Environmental Factors in the Aetiology of Autism – Lessons from Animals Prenatally Exposed to Valproic Acid, Autism - A Neurodevelopmental Journey from Genes to Behaviour, Valsamma Eapen, IntechOpen. August 17th 2011. Available from: https://www.intechopen.com/books/autism-a-neurodevelopmental-journey-from-genes-to-behaviour/environmental-factors-in-the-aetiology-of-autism-lessons-from-animals-prenatally-exposed-to-valproic .
    Kataoka S, Takuma K, Hara Y, Maeda Y, Ago Y, Matsuda T. Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int J Neuropsychopharmacol. 2013. https://doi.org/10.1017/S1461145711001714 .
    Ryan BC, Young NB, Moy SS, Crawley JN. Olfactory cues are sufficient to elicit social approach behaviors but not social transmission of food preference in C57BL/6J mice. Behav Brain Res. 2008. https://doi.org/10.1016/j.bbr.2008.06.002 .
    Zorumski CF, Izumi Y, Mennerick S. Ketamine: NMDA receptors and beyond. J Neurosci. 2016. https://doi.org/10.1523/JNEUROSCI.1547-16.2016 .
    Zhou Y, Tencerová B, Hartveit E, Veruki ML. Functional NMDA receptors are expressed by both AII and A17 amacrine cells in the rod pathway of the mammalian retina. J Neurophysiol. 2016. https://doi.org/10.1152/jn.00947.2015 .
    Perlman I. Testing retinal toxicity of drugs in animal models using electrophysiological and morphological techniques. Doc Ophthalmol. 2009. https://doi.org/10.1007/s10633-008-9153-6 .
    Abd-El-Barr MM, Pennesi ME, Saszik SM, Barrow AJ, Lem J, Bramblett DE, et al. Genetic dissection of rod and cone pathways in the dark-adapted mouse retina. J Neurophysiol. 2009. https://doi.org/10.1152/jn.00142.2009 .
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976. https://doi.org/10.1016/0003-2697(76)90527-3 .
    Kim KC, Kim P, Go HS, Choi CS, Park JH, Kim HJ, et al. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. J Neurochem. 2013. https://doi.org/10.1111/jnc.12147 .
    Saft P, Toledo-Cardenas R, Coria-Avila GA, Perez-Pouchoulen M, Brug B, Hernandez ME, et al. Characterization of four types of tail abnormalities in rats treated prenatally with valproic acid. Revista Eneurobiología. 2014;5(9):070714.
    Robson JG, Saszik SM, Ahmed J, Frishman LJ. Rod and cone contributions to the a-wave of the electroretinogram of the macaque. J Physiol. 2003. https://doi.org/10.1113/jphysiol.2002.030304 .
    Lima Caldeira G, Peca J, Carvalho AL. New insights on synaptic dysfunction in neuropsychiatric disorders. Curr Opin Neurobiol. 2019. https://doi.org/10.1016/j.conb.2019.01.004 .
    Mandell JW, Townes-Anderson E, Czernik AJ, Cameron R, Greengard P, De Camilli P. Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses. Neuron. 1990. https://doi.org/10.1016/0896-6273(90)90030-J .
    Pop AS, Gomez-Mancilla B, Neri G, Willemsen R, Gasparini F. Fragile X syndrome: a preclinical review on metabotropic glutamate receptor 5 (mGluR5) antagonists and drug development. Psychopharmacology. 2014. https://doi.org/10.1007/s00213-013-3330-3 .
    Yazulla S, Studholme KM, Pinto LH. Differences in the retinal GABA system among control, spastic mutant and retinal degeneration mutant mice. 1997; doi: https://doi.org/10.1016/S0042-6989(96)00223-4 .
    Guimarães-Souza EM, Gardino PF, De Mello FG, Calaza KC. A calcium-dependent glutamate release induced by metabotropic glutamate receptors I/II promotes GABA efflux from amacrine cells via a transporter-mediated process. Neuroscience. 2011. https://doi.org/10.1016/j.neuroscience.2011.01.035 .
    Edalatmanesh MA, Nikfarjam H, Vafaee F, Moghadas M. Increased hippocampal cell density and enhanced spatial memory in the valproic acid rat model of autism. Brain Res. 2013. https://doi.org/10.1016/j.brainres.2013.06.024 .
    Codagnone MG, Podestá MF, Uccelli NA, Reinés A. Differential local connectivity and neuroinflammation profiles in the medial prefrontal cortex and hippocampus in the valproic acid rat model of autism. Dev Neurosci. 2015. https://doi.org/10.1159/000375489 .
    Bambini-Junior V, Rodrigues L, Behr GA, Moreira JC, Riesgo R, Gottfried C. Animal model of autism induced by prenatal exposure to valproate: behavioral changes and liver parameters. Brain Res. 2011. https://doi.org/10.1016/j.brainres.2011.06.015 .
    Rossignol R, Ranchon-Cole I, Pâris A, Herzine A, Perche A, Laurenceau D, et al. Visual sensorial impairments in neurodevelopmental disorders: evidence for a retinal phenotype in fragile X syndrome. PLoS One. 2014. https://doi.org/10.1371/journal.pone.0105996 .
    Perche O, Felgerolle C, Ardourel M, Bazinet A, Pâris A, Rossignol R, et al. Early retinal defects in Fmr1 −/y mice: toward a critical role of visual dys-sensitivity in the fragile X syndrome phenotype? Front Cell Neurosci. 2018. https://doi.org/10.3389/fncel.2018.00096 .
    Constable PA, Gaigg SB, Bowler DM, Jägle H, Thompson DA. Full-field electroretinogram in autism spectrum disorder. Doc Ophthalmol. 2016. https://doi.org/10.1007/s10633-016-9529-y .
    Cesca F, Baldelli P, Valtorta F, Benfenati F. The synapsins: key actors of synapse function and plasticity. Prog Neurobiol. 2010. https://doi.org/10.1016/j.pneurobio.2010.04.006 .
    Greco B, Managò F, Tucci V, Kao HT, Valtorta F, Benfenatia F. Autism-related behavioral abnormalities in synapsin knockout mice. Behav Brain Res. 2013. https://doi.org/10.1016/j.bbr.2012.12.015 .
    Dhingra NK, Ramamohan Y, Raju TR. Developmental expression of synaptophysin, synapsin-I and syntaxin in the rat retina. Dev Brain Res. 1997. https://doi.org/10.1016/S0165-3806(97)00085-0 .
    Haas CA, DeGennaro LJ, Müller M, Holländer H. Synapsin I expression in the rat retina during postnatal development. Exp Brain Res. 1990. https://doi.org/10.1007/BF00230834 .
    Giovedí S, Corradi A, Fassio A, Benfenati F. Involvement of synaptic genes in the pathogenesis of autism spectrum disorders: the case of synapsins. Front Pediatr. 2014. https://doi.org/10.3389/fped.2014.00094 .
    Schwartz EA. L-glutamate conditionally modulates the K+ current of Müller glial cells. Neuron. 1993. https://doi.org/10.1016/0896-6273(93)90062-V .
    Brew H, Attwell D. Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Nature. 1987. https://doi.org/10.1038/327707a0 .
    Schwartz EA, Tachibana M. Electrophysiology of glutamate and sodium co-transport in a glial cell of the salamander retina. J Physiol Lond. 1990. https://doi.org/10.1113/jphysiol.1990.sp018126 .
    Joselevitch C, Klooster J, Kamermans M. Localization of metabotropic glutamate receptors in the outer plexiform layer of the goldfish retina. Cell Tissue Res. 2007. https://doi.org/10.1007/s00441-007-0496-1 .
    Hoffpauir BK, Gleason EL. Activation of mGluR5 modulates GABA(A) receptor function in retinal amacrine cells. J Neurophysiol. 2002. https://doi.org/10.1152/jn.2002.88.4.1766 .
    D'Hulst C, Heulens I, Brouwer JR, Willemsen R, De Geest N, Reeve SP, et al. Expression of the GABAergic system in animal models for fragile X syndrome and fragile X associated tremor/ataxia syndrome (FXTAS). Brain Res. 2009. https://doi.org/10.1016/j.brainres.2008.11.075 .
    Adusei DC, Pacey LK, Chen D, Hampson DR. Early developmental alterations in GABAergic protein expression in fragile X knockout mice. Neuropharmacology. 2010. https://doi.org/10.1016/j.neuropharm.2010.05.002 .
    Kaufmann WE, Kidd SA, Andrews HF, Budimirovic DB, Esler A, Haas-Givler B, et al. Autism spectrum disorder in fragile X syndrome: cooccurring conditions and current treatment. Pediatrics. 2017. https://doi.org/10.1542/peds.2016-1159F .
    Bear MF, Huber KM, Warren ST. The mGluR theory of fragile X mental retardation. Trends Neurosci. 2004. https://doi.org/10.1016/j.tins.2004.04.009 .
    Bear MF, Dölen G, Osterweil E, Nagarajan N. Fragile X: translation in action. Neuropsychopharmacology. 2008. https://doi.org/10.1038/sj.npp.1301610 .
    Guimarães-Souza EM, Perche O, Morgans CW, Duvoisin RM, Calaza KC. Fragile X mental retardation protein expression in the retina is regulated by light. Exp Eye Res. 2016. https://doi.org/10.1016/j.exer.2015.11.025 .
    Harazny J, Scholz M, Buder T, Lausen B, Kremers J. Electrophysiological deficits in the retina of the DBA/2J mouse. Doc Ophthalmol. 2009. https://doi.org/10.1007/s10633-009-9194-5 .
    Porciatti V, Pizzorusso T, Maffei L. Electrophysiology of the postreceptoral visual pathway in mice. Doc Ophthalmol. 2002. https://doi.org/10.1023/A:1014463212001 .

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020