Unsupervised meta-learning for clustering algorithm recommendation (2019)
- Authors:
- USP affiliated authors: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC ; PIMENTEL, BRUNO ALMEIDA - ICMC
- Unidade: ICMC
- DOI: 10.1109/IJCNN.2019.8851989
- Subjects: APRENDIZADO COMPUTACIONAL; ALGORITMOS ÚTEIS E ESPECÍFICOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2019
- Source:
- Título: Proceedings
- Conference titles: International Joint Conference on Neural Networks - IJCNN
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
PIMENTEL, Bruno Almeida e CARVALHO, André Carlos Ponce de Leon Ferreira de. Unsupervised meta-learning for clustering algorithm recommendation. 2019, Anais.. Piscataway: IEEE, 2019. Disponível em: https://doi.org/10.1109/IJCNN.2019.8851989. Acesso em: 29 dez. 2025. -
APA
Pimentel, B. A., & Carvalho, A. C. P. de L. F. de. (2019). Unsupervised meta-learning for clustering algorithm recommendation. In Proceedings. Piscataway: IEEE. doi:10.1109/IJCNN.2019.8851989 -
NLM
Pimentel BA, Carvalho ACP de LF de. Unsupervised meta-learning for clustering algorithm recommendation [Internet]. Proceedings. 2019 ;[citado 2025 dez. 29 ] Available from: https://doi.org/10.1109/IJCNN.2019.8851989 -
Vancouver
Pimentel BA, Carvalho ACP de LF de. Unsupervised meta-learning for clustering algorithm recommendation [Internet]. Proceedings. 2019 ;[citado 2025 dez. 29 ] Available from: https://doi.org/10.1109/IJCNN.2019.8851989 - A meta-learning approach for recommending the number of clusters for clustering algorithms
- Explainable machine learning algorithms for predicting glass transition temperatures
- Reduction strategies for hierarchical multi-label classification in protein function prediction
- Intelligent-guided adaptive search for the maximum covering location problem
- Clus-DTI: improving decision-tree classification with a clustering-based decision-tree induction algorithm
- A density-based clustering approach for behavior change detection in data streams
- Automatic selection of learning bias for active sampling
- Deep learning for biological image classification
- Viabilidade do aprendizado ativo em máquinas extremas
- Multi-objective optimization applied to systematic conservation planning and spatial conservation priorities under climate change
Informações sobre o DOI: 10.1109/IJCNN.2019.8851989 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
