Pseudodifferential operators, Rellich-Kondrachov theorem and localizable Sobolev-Hardy spaces (2018)
- Autor:
- Autor USP: PICON, TIAGO HENRIQUE - FFCLRP
- Unidade: FFCLRP
- Subjects: OPERADORES PSEUDODIFERENCIAIS; MATEMÁTICA
- Language: Inglês
- Imprenta:
- Source:
- Título: Résumé
- Conference titles: Séminaire Analyse Harmonique
-
ABNT
PICON, Tiago Henrique. Pseudodifferential operators, Rellich-Kondrachov theorem and localizable Sobolev-Hardy spaces. 2018, Anais.. Orsay: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 2018. Disponível em: https://www.math.u-psud.fr/Pseudodifferential-operators-Rellich-Kondrachov-theorem-and-localizable-Sobolev?lang=fr. Acesso em: 23 jan. 2026. -
APA
Picon, T. H. (2018). Pseudodifferential operators, Rellich-Kondrachov theorem and localizable Sobolev-Hardy spaces. In Résumé. Orsay: Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Recuperado de https://www.math.u-psud.fr/Pseudodifferential-operators-Rellich-Kondrachov-theorem-and-localizable-Sobolev?lang=fr -
NLM
Picon TH. Pseudodifferential operators, Rellich-Kondrachov theorem and localizable Sobolev-Hardy spaces [Internet]. Résumé. 2018 ;[citado 2026 jan. 23 ] Available from: https://www.math.u-psud.fr/Pseudodifferential-operators-Rellich-Kondrachov-theorem-and-localizable-Sobolev?lang=fr -
Vancouver
Picon TH. Pseudodifferential operators, Rellich-Kondrachov theorem and localizable Sobolev-Hardy spaces [Internet]. Résumé. 2018 ;[citado 2026 jan. 23 ] Available from: https://www.math.u-psud.fr/Pseudodifferential-operators-Rellich-Kondrachov-theorem-and-localizable-Sobolev?lang=fr - Local Hardy-Littlewood-Sobolev inequalities for canceling elliptic differential operators
- Fractional Hardy-Sobolev inequalities for elliptic differential operators
- L strong charges for elliptic systems of complex vector fields
- Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields
- ICMC Summer Meeting on Differential Equations: session organizers and link managers: harmonic analysis and related topics
- Div–curl type estimates for elliptic systems of complex vector fields
- Stein-Weiss inequality in L 1 norm for vector fields
- The boundedness of inhomogeneous Calderón–Zygmund operators on local Hardy spaces and approximate moment conditions
- Stein-Weiss inequality in L 1 norm for vector fields
- Hardy-littlewood-sobolev inequalities for elliptic and canceling differential operators
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
