Exportar registro bibliográfico


Soil bacterial community changes in sugarcane fields under straw removal in Brazil (2019)

  • Authors:
  • Unidade: ESALQ
  • DOI: 10.1007/s12155-019-10010-z
  • Keywords: Bioenergia
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s12155-019-10010-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PIMENTEL, Laisa Gouveia; GUMIERE, Thiago; OLIVEIRA, Dener Maurício da Silva; et al. Soil bacterial community changes in sugarcane fields under straw removal in Brazil. BioEnergy Research, Cham, Springer, p. 1-13, 2019. Disponível em: < https://doi.org/10.1007/s12155-019-10010-z > DOI: 10.1007/s12155-019-10010-z.
    • APA

      Pimentel, L. G., Gumiere, T., Oliveira, D. M. da S., Cherubin, M. R., Andreote, F. D., Cerri, C. E. P., & Cerri, C. C. (2019). Soil bacterial community changes in sugarcane fields under straw removal in Brazil. BioEnergy Research, 1-13. doi:10.1007/s12155-019-10010-z
    • NLM

      Pimentel LG, Gumiere T, Oliveira DM da S, Cherubin MR, Andreote FD, Cerri CEP, Cerri CC. Soil bacterial community changes in sugarcane fields under straw removal in Brazil [Internet]. BioEnergy Research. 2019 ; 1-13.Available from: https://doi.org/10.1007/s12155-019-10010-z
    • Vancouver

      Pimentel LG, Gumiere T, Oliveira DM da S, Cherubin MR, Andreote FD, Cerri CEP, Cerri CC. Soil bacterial community changes in sugarcane fields under straw removal in Brazil [Internet]. BioEnergy Research. 2019 ; 1-13.Available from: https://doi.org/10.1007/s12155-019-10010-z

    Referências citadas na obra
    CONAB, Companhia Nacional de Abastecimento (2018) Acompanhamento da safra brasileira: Cana-de-açúcar - V5 - safra 2018/19. Terceiro levantamento, dezembro 2018. https://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar . Accessed 11 March 2019
    Carvalho JLN, Nogueirol RC, Menandro LMS, Bordonal RO, Borges CD, Cantarella H, Franco HCJ (2017) Agronomic and environmental implications of sugarcane straw removal: a major review. GCB Bioenergy 9:1181–1195. https://doi.org/10.1111/gcbb.12410
    Menandro LMS, Cantarella H, Franco HCJ, Kolln OT, Pimenta MTB, Sanches GM, Rabelo SC, Carvalho JLN (2017) Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production. Biofuels Bioprod Biorefin 11:488–504. https://doi.org/10.1002/bbb.1760
    Cherubin MR, Oliveira DMS, Feigl BJ, Pimentel LG, Lisboa IP, Gmach MR, Varanda LL, Morais MC, Satiro LS, Popin GV, de Paiva SR, dos Santos AKB, de Vasconcelos ALS, de Melo PLA, Cerri CEP, Cerri CC (2018) Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: a review. Sci Agríc 75:255–272. https://doi.org/10.1590/1678-992x-2016-0459
    Sousa JG Jr, Cherubin MR, Cerri CEP, Cerri CC, Feigl BJ (2017) Sugar cane straw left in field during harvest: decomposition dynamics and composition changes. Soil Res 55:758–768. https://doi.org/10.1071/SR16310
    Pimentel LG, Cherubin MR, Oliveira DMS, Cerri CEP, Cerri CC (2019) Decomposition of sugarcane straw: basis for management decisions for bioenergy production. Biomass Bioenergy 122:133–144. https://doi.org/10.1016/j.biombioe.2019.01.027
    Oliveira DMS, Williams S, Cerri CEP, Paustian K (2017) Predicting soil C changes over sugarcane expansion in Brazil using the DayCent model. GCB Bioenergy 9:1436–1446. https://doi.org/10.1111/gcbb.12427
    Rachid C, Pires CA, Leite DCA, Coutinho HLC, Peixoto RS, Rosado AS, Salton J, Zanatta JA, Mercante FM, Angelini GAR, Balieiro FD (2016) Sugarcane trash levels in soil affects the fungi but not bacteria in a short-term field experiment. Braz J Microbiol 47:322–326. https://doi.org/10.1016/j.bjm.2016.01.010
    Mendes LW, Brossi MJD, Kuramae EE, Tsai SM (2015) Land-use system shapes soil bacterial communities in Southeastern Amazon region. Appl Soil Ecol 95:151–160. https://doi.org/10.1016/j.apsoil.2015.06.005
    Zhao SC, Li KJ, Zhou W, Qiu SJ, Huang SW, He P (2016) Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric Ecosyst Environ 216:82–88. https://doi.org/10.1016/j.agee.2015.09.028
    Xu M, Xia H, Wu J, Yang G, Zhang X, Peng H, Yu X, Li L, Xiao H, Qi H (2017) Shifts in the relative abundance of bacteria after wine-lees-derived biochar intervention in multi metal-contaminated paddy soil. Sci Total Environ 599:1297–1307. https://doi.org/10.1016/j.scitotenv.2017.05.086
    Finn D, Kopittke PM, Dennis PG, Dalal RC (2017) Microbial energy and matter transformation in agricultural soils. Soil Biol Biochem 111:176–192. https://doi.org/10.1016/j.soilbio.2017.04.010
    Wang J, Ren C, Cheng H, Zou Y, Bughio MA, Li Q (2017) Conversion of rainforest into agroforestry andmonoculture plantation in China: consequences for soil phosphorus forms and microbial community. Sci Total Environ 595:769–778. https://doi.org/10.1016/j.scitotenv.2017.04.012
    Lammel DR, Nusslein K, Tsai SM, Cerri CC (2015) Land use, soil and litter chemistry drive bacterial community structures in samples of the rainforest and Cerrado (Brazilian Savannah) biomes in Southern Amazonia. Eur J Soil Biol 66:32–39. https://doi.org/10.1016/j.ejsobi.2014.11.001
    Karimi B, Maron PA, Boure NC-P, Bernard N, Gilbert D, Ranjard L (2017) Microbial diversity and ecological networks as indicators of environmental quality. Environ Chem Lett 15:265–281. https://doi.org/10.1007/s10311-017-0614-6
    Gumiere T, Gumiere SJ, Matteau J-P, Constant P, Létourneau G, Rousseau AN (2019) Soil bacterial community associated with high potato production and minimal water use. Front Environ Sci 6:1–14. https://doi.org/10.3389/fenvs.2018.00161
    Liao J, Cao X, Zhao L, Wang J, Gao Z, Wang M, Huang Y (2016) The importance of neutral and niche processes for bacterial community assembly differs between habitat generalists and specialists. FEMS Microbiol Ecol 92:1–10. https://doi.org/10.1093/femsec/fiw174
    Atlas R, Horowitz A, Krichevsky M, Bej A (1991) Response of microbial populations to environmental disturbance. Microb Ecol 22:249–256. https://doi.org/10.1007/BF02540227
    USDA, United States Department of Agriculture (2014) Keys to soil taxonomy. USDA - Natural Resources Conservation Service, Washington, DC
    Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
    Schutte UME, Abdo Z, Bent SJ, Williams CJ, Schneider GM, Solheim B, Forney LJ (2009) Bacterial succession in a glacier foreland of the High Arctic. ISME J 3:1258–1268. https://doi.org/10.1111/j.1365-294X.2009.04479.x
    Durrer A, Gumiere T, Taketani RG, da Costa DP, Silva M, Andreote FD (2017) The drivers underlying biogeographical patterns of bacterial communities in soils under sugarcane cultivation. Appl Soil Ecol 110:12–20. https://doi.org/10.1016/j.apsoil.2016.11.005
    Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522
    Culman SW, Gauch HG, Blackwood CB, Thies JE (2008) Analysis of T-RFLP data using analysis of variance and ordination methods: a comparative study. J Microbiol Methods 75:55–63. https://doi.org/10.1016/j.mimet.2008.04.011
    R Development Core Team (2018) R: a language and environment for statistical computing, reference index version 3.5.2. R Foundation for Statistical Computing, Vienna ISBN 3-900051-07-0, http://www.R-project.org
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Szoecs E, Wagner H (2018) vegan: Community Ecology Package. R package version 2.5-3
    Chazdon RL, Chao A, Colwell RK, Lin S-Y, Norden N, Letcher SG, Clark DB, Finegan B, Arroyo JP (2011) A novel statistical method for classifying habitat generalists and specialists. Ecology 92:1332–1343. https://doi.org/10.1890/10-1345.1
    Kurtz Z, Mueller C, Miraldi E, Bonneau R (2019) SpiecEasi Package. R package version 2.5-3
    Batushansky A, Toubiana D, Fait A (2016) Correlation-based network generation, visualization, and analysis as a powerful tool in biological studies: a case study in cancer cell metabolism. Biomed Res Int 2016:1–9. https://doi.org/10.1155/2016/8313272
    Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. In: Third International AAAI Conference on Weblogs and Social Media. pp 361-362.
    Ma Z (2018) The P/N (positive-to-negative links) ratio in complex networks—a promising in silico biomarker for detecting changes occurring in the human microbiome. Microb Ecol 75:1063–1073. https://doi.org/10.1007/s00248-017-1079-7
    Newman MEJ (2006) Modularity and community structure in networks. Proc Nat Acad Sci 103:8577–8582. https://doi.org/10.1073/pnas.0601602103
    Zhou GX, Zhang JB, Mao JD, Zhang CZ, Chen L, Xin XL, Zhao BZ (2015) Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact. Sci Rep 5:11. https://doi.org/10.1038/srep14851
    Baumann K, Marschner P, Smernik RJ, Baldock JA (2009) Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biol Biochem 41:1966–1975. https://doi.org/10.1016/j.soilbio.2009.06.022
    Barreiro A, Baath E, Diaz-Ravina M (2016) Bacterial and fungal growth in burnt acid soils amended with different high C/N mulch materials. Soil Biol Biochem 97:102–111. https://doi.org/10.1016/j.soilbio.2016.03.009
    Fanin N, Bertrand I (2016) Aboveground litter quality is a better predictor than belowground microbial communities when estimating carbon mineralization along a land-use gradient. Soil Biol Biochem 94:48–60. https://doi.org/10.1016/j.soilbio.2015.11.007
    Sauvadet M, Chauvat M, Fanina N, Coulibaly S, Bertrand I (2016) Comparing the effects of litter quantity and quality on soil biota structure and functioning: application to a cultivated soil in Northern France. Appl Soil Ecol 107:261–271. https://doi.org/10.1016/j.apsoil.2016.06.010
    Zhou GX, Zhang JB, Chen L, Zhang CZ, Yu ZH (2016) Temperature and straw quality regulate the microbial phospholipid fatty acid composition associated with straw decomposition. Pedosphere 26:386–398. https://doi.org/10.1016/S1002-0160(15)60051-0
    McGuire KL, Treseder KK (2010) Microbial communities and their relevance for ecosystem models: decomposition as a case study. Soil Biol Biochem 42:529–535. https://doi.org/10.1016/j.soilbio.2009.11.016
    Cleveland CC, Reed SC, Keller AB, Nemergut DR, O’Neill SP, Ostertag R, Vitousek PM (2014) Litter quality versus soil microbial community controls over decomposition: a quantitative analysis. Oecologia 174:283–294. https://doi.org/10.1007/s00442-013-2758-9
    Lu P, Lin YH, Yang ZQ, Xu YP, Tan F, Jia XD, Wang M, Xu DR, Wang XZ (2015) Effects of application of corn straw on soil microbial community structure during the maize growing season. J Basic Microbiol 55:22–32. https://doi.org/10.1002/jobm.201300744
    Navarro-Noya YE, Gomez-Acata S, Montoya-Ciriaco N, Rojas-Valdez A, Suarez-Arriaga MC, Valenzuela-Encinas C, Jimenez-Bueno N, Verhulst N, Govaerts B, Dendooven L (2013) Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol Biochem 65:86–95. https://doi.org/10.1016/j.soilbio.2013.05.009
    Hu W, Zhang Q, Tian T, Li D, Cheng G, Mu J, Wu Q, Niu F, Stegen JC, An L, Feng H (2015) Relative roles of deterministic and stochastic processes in driving the vertical distribution of bacterial communities in a permafrost core from the Qinghai-Tibet Plateau, China. Plos One 10:1–19. https://doi.org/10.1371/journal.pone.0145747
    Morais MC (2016) Efeito da remoção de quantidades de palha de cana-de-açúcar na biomassa e na comunidade microbiana do solo. Dissertation, University of São Paulo
    Lupatini M, Suleiman AKA, Jacques RJS, Antoniolli ZI, Ferreira AS, Kuramae EE, Roesch LFW (2014) Network topology reveals high connectance levels and few key microbial genera within soils. Front Environ Sci 2:1–11. https://doi.org/10.3389/fenvs.2014.00010
    Bauer WD, Robinson JB (2002) Disruption of bacterial quorum sensing by other organisms. Curr Opin Biotechnol 13:234–237. https://doi.org/10.1016/S0958-1669(02)00310-5
    Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310. https://doi.org/10.1126/science.199.4335.1302
    Sheil D, Burslem DFRP (2013) Defining and defending Connell’s intermediate disturbance hypothesis: a response to Fox. Trends Ecol Evol 28:571–572. https://doi.org/10.1016/j.tree.2013.07.006
    MME, Ministério de Minas e Energia (2019) RenovaBio. http://www.mme.gov.br/web/guest/secretarias/petroleo-gas-natural-e-combustiveis-renovaveis/programas/renovabio/principal . Accessed 11 March 2019

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020