Exportar registro bibliográfico


Metrics:

Genome-wide association scan for QTL and their positional candidate genes associated with internal organ traits in chickens (2019)

  • Authors:
  • USP affiliated authors: MOURÃO, GERSON BARRETO - ESALQ ; COUTINHO, LUIZ LEHMANN - ESALQ ; MOREIRA, GABRIEL COSTA MONTEIRO - ESALQ ; SALVIAN, MAYARA - ESALQ ; BOSCHIERO, CLARISSA - ESALQ ; CESAR, ALINE SILVA MELLO - ESALQ ; GODOY, THAÍS FERNANDA - ESALQ
  • School: ESALQ
  • DOI: 10.1186/s12864-019-6040-3
  • Subjects: DOENÇAS METABÓLICAS; GALINHAS; GANHO DE PESO; GENES; GENOMAS; HERDABILIDADE; MAPEAMENTO GENÉTICO
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Versão PublicadaOnline source accessDOI
    Informações sobre o DOI: 10.1186/s12864-019-6040-3 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    Download do texto completo

    Tipo Nome Link
    Versão Publicada2964274-Genome-wide assoc...Direct link
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MOREIRA, Gabriel Costa Monteiro; SALVIAN, Mayara; BOSCHIERO, Clarissa; et al. Genome-wide association scan for QTL and their positional candidate genes associated with internal organ traits in chickens. BMC Genomics, London, BioMed Central, v. 20, p. 1-15, 2019. Disponível em: < https://doi.org/10.1186/s12864-019-6040-3 > DOI: 10.1186/s12864-019-6040-3.
    • APA

      Moreira, G. C. M., Salvian, M., Boschiero, C., Cesar, A. S. M., Reecy, J. M., Godoy, T. F., et al. (2019). Genome-wide association scan for QTL and their positional candidate genes associated with internal organ traits in chickens. BMC Genomics, 20, 1-15. doi:10.1186/s12864-019-6040-3
    • NLM

      Moreira GCM, Salvian M, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Ledur MC, Garrick D, Mourão GB, Coutinho LL. Genome-wide association scan for QTL and their positional candidate genes associated with internal organ traits in chickens [Internet]. BMC Genomics. 2019 ; 20 1-15.Available from: https://doi.org/10.1186/s12864-019-6040-3
    • Vancouver

      Moreira GCM, Salvian M, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Ledur MC, Garrick D, Mourão GB, Coutinho LL. Genome-wide association scan for QTL and their positional candidate genes associated with internal organ traits in chickens [Internet]. BMC Genomics. 2019 ; 20 1-15.Available from: https://doi.org/10.1186/s12864-019-6040-3

    Referências citadas na obra
    Berri C, Wacrenier N, Millet N, Le Bihan-Duval E. Effect of selection for improved body composition on muscle and meat characteristics of broilers from experimental and commercial lines. Poult Sci. 2001;80:833–8.
    Baéza E, Le Bihan-Duval E. Chicken lines divergent for low or high abdominal fat deposition: a relevant model to study the regulation of energy metabolism. Animal. 2013;7:965–73 [cited 2013 Nov 12] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23433003 .
    Jennen DGJ. Vereijken a LJ, Bovenhuis H, Crooijmans RPM a, Veenendaal a, van der Poel JJ, et al. detection and localization of quantitative trait loci affecting fatness in broilers. Poult Sci. 2004;83:295–301 Available from: http://www.ncbi.nlm.nih.gov/pubmed/15049477 .
    Wang SZ, Hu XX, Wang ZP, Li XC, Wang QG, Wang YX, et al. Quantitative trait loci associated with body weight and abdominal fat traits on chicken chromosomes 3, 5 and 7. Genet Mol Res. 2012;11:956–65 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22576922 .
    Moura ASAMTAMT, Ledur MC, Boschiero C, Nones K, Pinto LFBB, Jaenisch FRFF, et al. Quantitative trait loci with sex-specific effects for internal organs weights and hematocrit value in a broiler-layer cross. J Appl Genet. 2016;57:215–24 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26496990 .
    Nones K, Ledur MC, Ruy DC, Baron EE, Melo CMR, Moura ASAMT, et al. Mapping QTLs on chicken chromosome 1 for performance and carcass traits in a broiler x layer cross. Anim Genet. 2006;37:95–100 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16573522 .
    Burt DW. Applications of biotechnology in the poultry industry. Worlds Poult Sci J. 2002;58:5–13 [cited 2019 Jun 3] Available from: https://www.cambridge.org/core/product/identifier/S0043933902000028/type/journal_article .
    Gaya LG, Ferraz JBS, Rezende FM, Mourao GB, Mattos EC, Eler JP, et al. Heritability and Genetic Correlation Estimates for Performance and Carcass and Body Composition Traits in a Male Broiler Line. Poult Sci. 2006;85:837–43 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16673760 .
    Schmidt CJ, Persia ME, Feierstein E, Kingham B. Saylor WW. Comparison of a modern broiler line and a heritage line unselected since the 1950s. Poult Sci. 2009;88:2610–9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/19903960 .
    Julian RJ. Rapid growth problems: ascites and skeletal deformities in broilers. Poult Sci. 1998;77:1773–80 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9872578 .
    Fernandes Do Rosário M, Neves Da Silva MA, Augusto A, Coelho D, José V, Savino M. Síndrome ascítica em frangos de corte: uma revisão sobre a fisiologia, avaliação e perspectivas Ascitic syndrome in broiler chickens: a review about physiology, evaluation and perspectives. Ciência Rural. 2004; cited 2018 Aug 4; Available from: http://www.scielo.br/pdf/cr/v34n6/a51v34n6.pdf .
    Olkowski AA, Duke T, Wojnarowicz C. The aetiology of hypoxaemia in chickens selected for rapid growth. Comp Biochem Physiol Part A Mol Integr Physiol. 2005;141:122–31 [cited 2018 Aug 4]. Available from: https://www.sciencedirect.com/science/article/pii/S1095643305000942?via%3Dihub .
    Tankson JD, Thaxton JP, Vizzier-Thaxton Y. Pulmonary hypertension syndrome in broilers caused by Enterococcus faecalis. Infect Immun. 2001;69:6318–22 [cited 2018 Aug 4] Available from: http://www.ncbi.nlm.nih.gov/pubmed/11553576 .
    Olkowski AA, Classen HL. High incidence of cardiac arrhythmias in broiler chickens. Zentralbl Veterinarmed A. 1998;45:83–91 Available from: http://www.ncbi.nlm.nih.gov/pubmed/9591472 .
    Olkowski AA, Classen HL, Riddell C, Bennett CD. A Study of Electrocardiographic Patterns in a Population of Commercial Broiler Chickens. Vet Res Commun. 1997;21:51–62 [cited 2018 Aug 3] Available from: http://link.springer.com/10.1023/B:VERC.0000009701.75985.cb .
    Olkowski AA. Pathophysiology of Heart Failure in Broiler Chickens: Structural, Biochemical, and Molecular Characteristics. Poult Sci. 2007;86:999–1005 [cited 2018 Aug 3] Available from: http://www.ncbi.nlm.nih.gov/pubmed/17435038 .
    Olkowski AA, Wojnarowicz C, Nain S, Ling B, Alcorn JM, Laarveld B. A study on pathogenesis of sudden death syndrome in broiler chickens. Res Vet Sci. 2008;85:131–40 [cited 2018 Aug 3] Available from: http://www.ncbi.nlm.nih.gov/pubmed/17904171 .
    de Verdal H, Narcy A, Bastianelli D, Chapuis H, Même N, Urvoix S, et al. Improving the efficiency of feed utilization in poultry by selection. 1. Genetic parameters of anatomy of the gastro-intestinal tract and digestive efficiency. BMC Genet. 2011;12:59 [cited 2018 Aug 4] Available from: http://www.ncbi.nlm.nih.gov/pubmed/21733156 .
    Li S, Wang X, Qu L, Dou T, Ma M, Shen M, et al. Genome-wide association studies for small intestine length in an F 2 population of chickens. Ital J Anim Sci. 2018;17:294–300 [cited 2018 Aug 4] Available from: https://www.tandfonline.com/doi/full/10.1080/1828051X.2017.1368419 .
    Scheele CW. Pathological changes in metabolism of poultry related to increasing production levels. Vet Q. 1997;19:127–30 [cited 2018 Aug 4] Available from: http://www.ncbi.nlm.nih.gov/pubmed/9323854 .
    Mignon-Grasteau S, Rideau N, Gabriel I, Chantry-Darmon C, Boscher M-Y, Sellier N, et al. Detection of QTL controlling feed efficiency and excretion in chickens fed a wheat-based diet. Genet Sel Evol. 2015;47:74 [cited 2018 Aug 4] Available from: http://www.gsejournal.org/content/47/1/74 .
    Boschiero C, Jorge EC, Ninov K, Nones K, do Rosário MF, Coutinho LL, et al. Association of IGF1 and KDM5A polymorphisms with performance, fatness and carcass traits in chickens. J Appl Genet. 2013;54:103–12 [cited 2017 Dec 26] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23275255 .
    Grupioni NV, Stafuzza NB, Carvajal AB, Ibelli AMG, Peixoto JO, Ledur MC, et al. Association of RUNX2 and TNFSF11 genes with production traits in a paternal broiler line. Genet Mol Res. 2017;16:gmr16019443.
    Gao Y, Du ZQ, Wei WH, Yu XJ, Deng XM, Feng CG, et al. Mapping quantitative trait loci regulating chicken body composition traits. Anim Genet. 2009;40:952–4 [cited 2018 Aug 4] Available from: http://www.ncbi.nlm.nih.gov/pubmed/19466937 .
    Navarro P, Visscher PM, Knott SA, Burt DW, Hocking PM, Haley CS. Mapping of quantitative trait loci affecting organ weights and blood variables in a broiler layer cross. Br Poult Sci. 2005;46:430–42 [cited 2018 Aug 4] Available from: http://www.ncbi.nlm.nih.gov/pubmed/16268100 .
    Ek W, Strömstedt L, Wahlberg P, Siegel P, Andersson L, Carlborg Ö. Genetic analysis of metabolic traits in an intercross between body weight-selected chicken lines. Physiol Genomics. 2010;42:20–2 [cited 2018 Sep 28] Available from: http://www.ncbi.nlm.nih.gov/pubmed/20332184 .
    Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, et al. Development of a high density 600K SNP genotyping array for chicken. BMC Genomics. 2013;14:59.
    Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies. Nat Genet. 2012;44:821–4 [cited 2018 Jul 14] Available from: http://www.ncbi.nlm.nih.gov/pubmed/22706312 .
    Hu Z-L, Park CA, Wu X-L, Reecy JM. Animal QTLdb: an improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res. 2013;41:D871–9 [cited 2017 Nov 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23180796 .
    Onteru SK, Gorbach DM, Young JM, Garrick DJ, Dekkers JCM, Rothschild MF. Whole Genome Association Studies of Residual Feed Intake and Related Traits in the Pig. Liu Z, editor. PLoS One. 2013;8:e61756. [cited 2017 Nov 7] Available from: http://dx.plos.org/10.1371/journal.pone.0061756
    Dou T, Shen M, Ma M, Qu L, Li Y, Hu Y, et al. Genetic architecture and candidate genes detected for chicken internal organ weight with a 600 K SNP array. Asian-Australasian J Anim Sci. 2018;32(3):341–9.
    Moreira GCM, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Pértille F, et al. Integration of genome wide association studies and whole genome sequencing provides novel insights into fat deposition in chicken. Sci Rep. 2018;8:16222 [cited 2018 Nov 10] Available from: http://www.ncbi.nlm.nih.gov/pubmed/30385857 .
    Boschiero C, Moreira GCM, Gheyas AA, Godoy TF, Gasparin G, Mariani PDSC, et al. Genome-wide characterization of genetic variants and putative regions under selection in meat and egg-type chicken lines. BMC Genomics. 2018;19:83 cited 2018 Mar 19] Available from: http://www.ncbi.nlm.nih.gov/pubmed/29370772 .
    Moreira GCM, Godoy TF, Boschiero C, Gheyas A, Gasparin G, Andrade SCS, et al. Variant discovery in a QTL region on chromosome 3 associated with fatness in chickens. Anim Genet. 2015;46:141–7 [cited 2018 May 5]Available from: http://www.ncbi.nlm.nih.gov/pubmed/25643900 .
    Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009; [cited 2017 Nov 7];4:1073–81. Available from: http://www.nature.com/doifinder/10.1038/nprot.2009.86 .
    Venturini GC, Cruz VAR, Rosa JO, Baldi F, El Faro L, Ledur MC, et al. Genetic and phenotypic parameters of carcass and organ traits of broiler chickens. Genet. Mol. Res. 2014; [cited 2017 Nov 10];13:10294–300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25501241 .
    Marchesi JAP, Buzanskas ME, Cantão ME, Ibelli AMG, Peixoto JO, Joaquim LB, et al. Relationship of runs of homozygosity with adaptive and production traits in a paternal broiler line. Animal. 2017:1–9 [cited 2018 Mar 24] Available from: http://www.ncbi.nlm.nih.gov/pubmed/29065939 .
    MF do R, Ledur MC, ASAMT M, Coutinho LL, AAF G. Genotypic characterization of microsatellite markers in broiler and layer selected chicken lines and their reciprocal F1s. Sci Agric. 2009;66:150–8 [cited 2017 Nov 7] Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-90162009000200002&lng=en&tlng=en .
    Pértille F, Zanella R, Felício AM, Ledur MC, Peixoto JO, Coutinho LL. Identification of polymorphisms associated with production traits on chicken (Gallus gallus) chromosome 4. Genet Mol Res. 2015;14:10717–28 [cited 2017 Nov 10] Available from: http://www.ncbi.nlm.nih.gov/pubmed/26400301 .
    Pértille F, Moreira GCM, Zanella R, Nunes JR, Boschiero C, Rovadoscki GA, et al. Genome-wide association study for performance traits in chickens using genotype by sequencing approach. Sci Rep. 2017;7:41748 [cited 2018 Jul 14] Available from: http://www.ncbi.nlm.nih.gov/pubmed/28181508 .
    Tran T-S, Narcy A, Carré B, Gabriel I, Rideau N, Gilbert H, et al. Detection of QTL controlling digestive efficiency and anatomy of the digestive tract in chicken fed a wheat-based diet. Genet Sel Evol. 2014;46:25 [cited 2018 Jul 20] Available from: http://www.gsejournal.org/content/46/1/25 .
    Faveri JC, Pinto LFB, Pedrosa VB, Ledur MC, Faveri JC, Pinto LFB, et al. Parâmetros genéticos e efeitos de sexo e cruzamento recíproco sobre características de interesse econômico em aves F2. Arq Bras Med. 2016;68:716–24 [cited 2017 Nov 7] Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-09352016000300716&lng=pt&tlng=pt .
    Heon Lee J, Park H-B, Heo K-N, Kang B-S, Jo C. Power of Variance Component Linkage Analysis to Identify Quantitative Trait Locus in Chickens. J Anim Sci. 2013;55:103–7 [cited 2018 Aug 3] Available from: https://doi.org/10.5187/JAST.2013.55.2.103 .
    Lien C-Y, Tixier-Boichard M, Wu S-W, Wang W-F, Ng CS, Chen C-F. Detection of QTL for traits related to adaptation to sub-optimal climatic conditions in chickens. Genet Sel Evol. 2017;49:39 [cited 2018 Sep 28] Available from: http://gsejournal.biomedcentral.com/articles/10.1186/s12711-017-0314-5 .
    Metzger J, Schrimpf R, Philipp U, Distl O. Expression Levels of LCORL Are Associated with Body Size in Horses. PLoS One. 2013;8:e56497 [cited 2018 Sep 28] Available from: http://dx.plos.org/10.1371/journal.pone.0056497 .
    Lindholm-Perry AK, Sexten AK, Kuehn LA, Smith TP, King DA, Shackelford SD, et al. Association, effects and validation of polymorphisms within the NCAPG - LCORL locus located on BTA6 with feed intake, gain, meat and carcass traits in beef cattle. BMC Genet. 2011;12:103 [cited 2018 Sep 28] Available from: http://www.ncbi.nlm.nih.gov/pubmed/22168586 .
    Coulombe G, Rivard N. New and Unexpected Biological Functions for the Src-Homology 2 Domain-Containing Phosphatase SHP-2 in the Gastrointestinal Tract. Cell Mol Gastroenterol Hepatol. 2016;2:11–21 [cited 2018 Jul 31] Available from: http://www.ncbi.nlm.nih.gov/pubmed/28174704 .
    Bard-Chapeau EA, Yuan J, Droin N, Long S, Zhang EE, Nguyen TV, et al. Concerted Functions of Gab1 and Shp2 in Liver Regeneration and Hepatoprotection. Mol Cell Biol. 2006;26:4664–74 [cited 2018 Jul 31] Available from: http://www.ncbi.nlm.nih.gov/pubmed/16738330 .
    Henley SA, Dick FA. The retinoblastoma family of proteins and their regulatory functions in the mammalian cell division cycle. Cell Div. 2012;7:10 [cited 2018 Jul 31] Available from: http://www.ncbi.nlm.nih.gov/pubmed/22417103 .
    Wang Y-X, Wang H-X, Na W, Qin F-Y, Zhang Z-W, Dong J-Q, et al. Retinoblastoma 1 (RB1) modulates the proliferation of chicken preadipocytes. bioRxiv. 2018;341453 [cited 2018 Sep 27] Available from: https://www.biorxiv.org/content/early/2018/06/07/341453 .
    Nikitin AY, Shan B, Flesken-Nikitin A, Chang KH, Lee WH. The retinoblastoma gene regulates somatic growth during mouse development. Cancer Res. 2001;61:3110–8 [cited 2018 Aug 1] Available from: http://www.ncbi.nlm.nih.gov/pubmed/11306495 .
    Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N, et al. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med. 1999; [cited 2018 Aug 1];189:1747–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10359578 .
    Takizawa Y, Shimizu H, Nishikawa T, Hatta N, Pulkkinen L, Uitto J. Novel ITGB4 mutations in a patient with junctional epidermolysis bullosa-pyloric atresia syndrome and altered basement membrane zone immunofluorescence for the alpha6beta4 integrin. J Invest Dermatol. 1997;108:943–6 [cited 2018 Aug 2] Available from: http://www.ncbi.nlm.nih.gov/pubmed/9182827 .
    Pulkkinen L, Kim DU, Uitto J. Epidermolysis bullosa with pyloric atresia: novel mutations in the beta4 integrin gene (ITGB4). Am J Pathol. 1998;152:157–66 [cited 2018 Aug 1] Available from: http://www.ncbi.nlm.nih.gov/pubmed/9422533 .
    Pulkkinen L, Rouan F, Bruckner-Tuderman L, Wallerstein R, Garzon M, Brown T, et al. Novel ITGB4 Mutations in Lethal and Nonlethal Variants of Epidermolysis Bullosa with Pyloric Atresia: Missense versus Nonsense. Am J Hum Genet. 1998;63:1376–87 [cited 2018 Aug 1] Available from: http://www.ncbi.nlm.nih.gov/pubmed/9792864 .
    Azarian M, Dreux S, Vuillard E, Meneguzzi G, Haber S, Guimiot F, et al. Prenatal diagnosis of inherited epidermolysis bullosa in a patient with no family history: a case report and literature review. Prenat Diagn. 2006;26:57–9 [cited 2018 Aug 1] Available from: http://www.ncbi.nlm.nih.gov/pubmed/16378325 .
    Pyloric BS. Atresia Type II. J neonatal Surg. 2013;2:36 [cited 2018 Aug 1] Available from: http://www.ncbi.nlm.nih.gov/pubmed/26023456 .
    Chung HJ, Uitto J. Epidermolysis bullosa with pyloric atresia. Dermatol Clin. 2010;28:43–54 [cited 2018 Aug 1] Available from: http://www.ncbi.nlm.nih.gov/pubmed/19945615 .
    He L, Vasiliou K, Nebert DW. Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics. 2009;3:195–206 [cited 2017 Nov 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/19164095 .
    Li H, Gilbert ER, Zhang Y, Crasta O, Emmerson D, Webb KE Jr, et al. Expression profiling of the solute carrier gene family in chicken intestine from the late embryonic to early post-hatch stages. Anim Genet. 2008;39:407–24 [cited 2018 Aug 2] Available from: http://www.ncbi.nlm.nih.gov/pubmed/18544075 .
    Gill RK, Pant N, Saksena S, Singla A, Nazir TM, Vohwinkel L, et al. Function, expression, and characterization of the serotonin transporter in the native human intestine. Am J Physiol Liver Physiol. 2008;294:G254–62 [cited 2018 Aug 2] Available from: http://www.ncbi.nlm.nih.gov/pubmed/17991706 .
    Gill RK, Anbazhagan AN, Esmaili A, Kumar A, Nazir S, Malakooti J, et al. Epidermal growth factor upregulates serotonin transporter in human intestinal epithelial cells via transcriptional mechanisms. Am J Physiol Liver Physiol. 2011;300:G627–36 [cited 2018 Aug 2] Available from: http://www.ncbi.nlm.nih.gov/pubmed/21273531 .
    Zhang DY, Goossens N, Guo J, Tsai M-C, Chou H-I, Altunkaynak C, et al. A hepatic stellate cell gene expression signature associated with outcomes in hepatitis C cirrhosis and hepatocellular carcinoma after curative resection. Gut. 2016;65:1754–64 [cited 2018 Sep 28] Available from: http://www.ncbi.nlm.nih.gov/pubmed/26045137 .
    Zhang C-Y, Yuan W-G, He P, Lei J-H, Wang C-X. Liver fibrosis and hepatic stellate cells: Etiology, pathological hallmarks and therapeutic targets. World J Gastroenterol. 2016;22:10512–22 [cited 2018 Sep 28] Available from: http://www.ncbi.nlm.nih.gov/pubmed/28082803 .
    Chen H-F, Ma R-R, He J-Y, Zhang H, Liu X-L, Guo X-Y, et al. Protocadherin 7 inhibits cell migration and invasion through E-cadherin in gastric cancer. Tumor Biol. 2017;39:101042831769755 [cited 2018 Sep 28] Available from: http://www.ncbi.nlm.nih.gov/pubmed/28381163 .
    Han Y-F, Cao G-W. Role of nuclear receptor NR4A2 in gastrointestinal inflammation and cancers. World J Gastroenterol. 2012;18:6865–73 [cited 2017 Nov 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23322982 .
    Madiraju AK, Erion DM, Rahimi Y, Zhang X-M, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510:542–6 [cited 2017 Nov 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/24847880 .
    Thaiss CA, Levy M, Grosheva I, Zheng D, Soffer E, Blacher E, et al. Hyperglycemia drives intestinal barrier dysfunction and risk for enteric infection. Science. 2018;359:1376–83 [cited 2018 Sep 28] Available from: http://www.ncbi.nlm.nih.gov/pubmed/29519916 .
    De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M. Nutritional Keys for Intestinal Barrier Modulation. Front Immunol. 2015;6:612 [cited 2018 Sep 28] Available from: http://www.ncbi.nlm.nih.gov/pubmed/26697008 .
    Celi P, Verlhac V, Pérez Calvo E, Schmeisser J, Kluenter A-M. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim Feed Sci Technol. 2018; [cited 2018 Sep 28]; Available from: https://www.sciencedirect.com/science/article/pii/S0377840118302438 .
    Pinsonneault JK, Frater JT, Kompa B, Mascarenhas R, Wang D, Sadee W. Intronic SNP in ESR1 encoding human estrogen receptor alpha is associated with brain ESR1 mRNA isoform expression and behavioral traits. PLoS One. 2017;12:e0179020 [cited 2018 mar 21] Available from: http://www.ncbi.nlm.nih.gov/pubmed/28617822 .
    Jo B-S, Choi SS. Introns: The Functional Benefits of Introns in Genomes. Genomics Inform. 2015;13:112–8 [cited 2018 Jan 28] Available from: http://www.ncbi.nlm.nih.gov/pubmed/26865841 .
    Berulava T, Horsthemke B. The obesity-associated SNPs in intron 1 of the FTO gene affect primary transcript levels. Eur J Hum Genet. 2010;18:1054–6 [cited 2018 Jan 28] Available from: http://www.ncbi.nlm.nih.gov/pubmed/20512162 .
    Ou JT, Tang SQ, Sun DX, Zhang Y. Polymorphisms of three neuroendocrine-correlated genes associated with growth and reproductive traits in the chicken. Poult Sci. 2009;88:722–7 [cited 2013 Mar 26] Available from: http://www.ncbi.nlm.nih.gov/pubmed/19276414 .
    Xie L, Luo C, Zhang C, Zhang R, Tang J, Nie Q, et al. Genome-wide association study identified a narrow chromosome 1 region associated with chicken growth traits. Liu Z, editor. PLoS One. 2012;7:e30910 [cited 2013 Mar 5] Available from: http://www.ncbi.nlm.nih.gov/pubmed/22359555 .
    Yan G, Qiao R, Zhang F, Xin W, Xiao S, Huang T, et al. Imputation-Based Whole-Genome Sequence Association Study Rediscovered the Missing QTL for Lumbar Number in Sutai Pigs. Sci Rep. 2017;7:615 [cited 2018 Jul 14] Available from: http://www.nature.com/articles/s41598-017-00729-0 .
    Felício AM, Boschiero C, Balieiro JCC, Ledur MC, Ferraz JBS, Michelan Filho T, et al. Identification and association of polymorphisms in CAPN1 and CAPN3 candidate genes related to performance and meat quality traits in chickens. Genet Mol Res. 2013;12:472–82 [cited 2017 Dec 26] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23420372 .
    Moreira GCM, Boschiero C, Cesar ASM, Reecy JM, Godoy TF, Trevisoli PA, et al. A genome-wide association study reveals novel genomic regions and positional candidate genes for fat deposition in broiler chickens. BMC Genomics. 2018;19:374 [cited 2018 Jun 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/29783939 .
    Derks MFL, Megens H-J, Bosse M, Visscher J, Peeters K, Bink MCAM, et al. A survey of functional genomic variation in domesticated chickens. Genet Sel Evol. 2018;50:17 [cited 2018 Aug 2] Available from: http://www.ncbi.nlm.nih.gov/pubmed/29661130 .
    Wu Z, Derks MFL, Dibbits B, Megens H-J, Groenen MAM, RPMA C. A Novel Loss-of-Function Variant in Transmembrane Protein 263 (TMEM263) of Autosomal Dwarfism in Chicken. Front Genet. 2018; [cited 2018 Aug 2];9:193. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29930570 .
    Calculated consequences [Internet]. [cited 2019 Jun 3]. Available from: https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html . Accessed July 2018.
    Van Goor A, Bolek KJ, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, et al. Identification of quantitative trait loci for body temperature, body weight, breast yield, and digestibility in an advanced intercross line of chickens under heat stress. Genet Sel Evol. 2015;47:96 [cited 2018 mar 25] Available from: http://www.ncbi.nlm.nih.gov/pubmed/26681307 .
    Van Goor A, Ashwell CM, Persia ME, Rothschild MF, Schmidt CJ, Lamont SJ. Quantitative trait loci identified for blood chemistry components of an advanced intercross line of chickens under heat stress. BMC Genomics. 2016;17:287 [cited 2017 Nov 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/27076351 .
    Cesar AS, Regitano LC, Mourão GB, Tullio RR, Lanna DP, Nassu RT, et al. Genome-wide association study for intramuscular fat deposition and composition in Nellore cattle. BMC Genet. 2014;15:39 [cited 2017 Nov 7] Available from: http://bmcgenet.biomedcentral.com/articles/10.1186/1471-2156-15-39 .
    Garrick DJ, Fernando RL. Implementing a QTL detection study (GWAS) using genomic prediction methodology. Methods Mol Biol. 2013;1019:275–98 [cited 2017 Nov 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23756895 .
    Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, et al. Ensembl 2013. Nucleic Acids Res. 2013;41:D48–D55. [cited 2018 mar 25] Available from: http://www.ncbi.nlm.nih.gov/pubmed/23203987 .
    Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database. 2011;2011:bar030–0 [cited 2018 Jul 17] Available from: http://www.ncbi.nlm.nih.gov/pubmed/21785142 .
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am J Hum Genet. 2007;81:559–75 [cited 2018 mar 25] Available from: http://www.ncbi.nlm.nih.gov/pubmed/17701901 .
    Weir BS, Cockerham CC. Estimating F-Statistics for the Analysis of Population Structure. Evolution (N Y). 1984;38:1358 [cited 2017 Nov 7] Available from: http://www.jstor.org/stable/2408641?origin=crossref .
    McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F. Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics. 2010;26:2069–70 [cited 2013 Oct 21] Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2916720&tool=pmcentrez&rendertype=abstract .
    Ng PC, SIFT HS. Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31:3812–4 [cited 2017 Nov 7] Available from: http://www.ncbi.nlm.nih.gov/pubmed/12824425 .

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020