Exportar registro bibliográfico


High glucose environments interfere with bone marrow-derived macrophage inflammatory mediator release, the TLR4 pathway and glucose metabolism (2019)

  • Authors:
  • Unidade: FCF
  • DOI: 10.1038/s41598-019-47836-8
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Versão PublicadaAcesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41598-019-47836-8 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    Download do texto completo

    Tipo Nome Link
    Versão Publicada2963042.pdfDirect link
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      AYALA, Thais Soprani; TESSARO, Fernando Henrique Galvão; JANNUZZI, Grasielle Pereira; et al. High glucose environments interfere with bone marrow-derived macrophage inflammatory mediator release, the TLR4 pathway and glucose metabolism. Scientific Reports, London, v. 9, n. 1, p. 1-15 art. 11447, 2019. Disponível em: < http://dx.doi.org/10.1038/s41598-019-47836-8 > DOI: 10.1038/s41598-019-47836-8.
    • APA

      Ayala, T. S., Tessaro, F. H. G., Jannuzzi, G. P., Bella, L. M., Ferreira, K. S., & Martins, J. de O. (2019). High glucose environments interfere with bone marrow-derived macrophage inflammatory mediator release, the TLR4 pathway and glucose metabolism. Scientific Reports, 9( 1), 1-15 art. 11447. doi:10.1038/s41598-019-47836-8
    • NLM

      Ayala TS, Tessaro FHG, Jannuzzi GP, Bella LM, Ferreira KS, Martins J de O. High glucose environments interfere with bone marrow-derived macrophage inflammatory mediator release, the TLR4 pathway and glucose metabolism [Internet]. Scientific Reports. 2019 ; 9( 1): 1-15 art. 11447.Available from: http://dx.doi.org/10.1038/s41598-019-47836-8
    • Vancouver

      Ayala TS, Tessaro FHG, Jannuzzi GP, Bella LM, Ferreira KS, Martins J de O. High glucose environments interfere with bone marrow-derived macrophage inflammatory mediator release, the TLR4 pathway and glucose metabolism [Internet]. Scientific Reports. 2019 ; 9( 1): 1-15 art. 11447.Available from: http://dx.doi.org/10.1038/s41598-019-47836-8

    Referências citadas na obra
    Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).
    Glass, C. K. & Natoli, G. Molecular control of activation and priming in macrophages. Nat. Immunol. 17, 26–33 (2015).
    Forbes, J. M. & Cooper, M. E. Mechanisms of diabetics complications. Physiol Rev. 93, 137–188 (2013).
    Mantovani, A. From phagocyte diversity and activation to probiotics: Back to Metchnikoff. Eur. J. Immunol. 38, 3269–3273 (2008).
    Hagemann, T., Lawrence, T. & Mcneish, I. “Re-educating” tumor-associated macrophages by targeting NF-kappa B. J. Exp. Med. 205, 1261–1268 (2008).
    Brady, N. J., Chuntova, P. & Schwertfeger, K. L. Macrophages: regulators of the inflammatory microenvironment during mammary grand development and breast cancer. Mediators of Inflamm. 2016, 1–13 (2016).
    Murray, P. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 41, 14–20 (2014).
    O’Neill, L. A. & Hardie, D. G. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 493, 346–355 (2016).
    Freemerman, A. J. et al. Metabolic reprogramming on macrophages, glucose transporter1 (GLUT1)- mediated glucose metabolism drives a proinflammatory phenotype. J. Biol. Chem. 289, 7884–7896 (2014).
    Atkinson, M. A., Eisenbarth, G. S. & Michels, A. W. Type 1 diabetes. The Lancet. 383, 69–82 (2014).
    Marik, P. E. & Bellomo, R. Stress hyperglycemia: an essential survival response! Crit. Care. 6 (2013).
    Sarwar, N. et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta‐ analysis of 102 prospective studies. Lancet. 375, 2215–2222 (2010).
    Van Amersfoort, E. S., Van Berkel, T. J. & Kuiper, J. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin. Microbiol. 16, 379–414 (2003).
    Kawai, T. & Akira, S. TLR signaling. Sem. in Immunol. 19, 24–32 (2007).
    Akira, S. & Takeda, K. Toll-like receptor signalling. Nat Rev Immunol (2004).
    Bauerfeld, C. P. et al. TLR4-mediated AKT activation is MyD88/TRIF dependent and critical for induction of oxidative phosphorylation and mitochondrial transcription factor A in murine macrophages. J Immunol. 15, 2847–2857 (2012).
    Hardie, D. G. & Carling, D. The AMP-activated protein kinase–fuel gauge of the mammalian cell? Eur J. Biochem. 246–259 (1997).
    Guha, M., Bai, W., Nadler, J. L. & Natajaran, R. Molecular mechanisms of tumor necrosis factor alpha gene expression in monocytic cells via hyperglycemia-induced oxidant stress-dependent and -independent pathways. J Biol Chem. 275, 17728–17739 (2000).
    Delgoffe, G. M. et al. The mTOR kinase differen- tially regulates effector and regulatory T cell lineage commitment. Immunity. 30, 832–844 (2009).
    Poole, A. W., Pula, G., Hers, I., Crosby, D. & Jones, M. L. PKC-interacting proteins: From function to pharmacology. Trends Pharmacol. Sci. 25, 528–535 (2004).
    Newton, C. Regulation of the ABC kinases by phosphorylation: protein kinase C as a paradigm. Biochem. J. 370, 361–371 (2003).
    Loegering, D. & Lennartz, M. Protein Kinase C and Toll-Like Receptor Signaling. Enzyme Res. 1–7 (2011).
    Nagy, C. & Haschemi, A. Time and demand are two critical dimensions of immunometabolism: the process of mac-rophage activation and the pentose phosphate pathway. Front. Immunol. 6, 164 (2015).
    Gupta, S., Koirala, J., Khardori, R. & Khardori, N. Infections in diabetes mellitus and hyperglycemia. Infect Dis Clin North Am. 21, 617–638 (2007).
    Shilling, A. M. & Raphael, J. Diabetes, hyperglycemia, and infections. Best Pract Res Clin Anaesthesiol. 22, 519–535 (2008).
    Lamers, M. L., Almeida, M. S., Vicente-Manzanares, M., Horwitz, A. F. & Santos, M. F. High glucose-mediated oxidative stress impairs cell migration. Plos One. 6, 1–6 (2011).
    Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity. 70, 19–59 (2003).
    Dasu, M. R., Devaraj, S. & Jialal, I. High glucose induces IL-1β expression in human monocytes: mechanistic insights. Am J Physiol Endocrinol Metab. 293, 337–346 (2007).
    Geerlings, S. E. & Hoepelman, A. I. M. Immune dysfunction in patients with diabetes mellitus (DM). Pathog and Dis. 26, 259–265 (1999).
    Alves, C., Casqueiro, J. & Casqueiro, J. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian J Endocr Metab. 16, 1–27 (2012).
    Lenzen, S. The mechanisms of alloxan-and- streptozotocin- induced diabetes. Diabetologia 51, 216–226 (2008).
    Tessaro, F. H. G., Ayala, T. S., Nolasco, E. L., Bella, L. M. & Martins, J. O. Insulin Influences LPS-Induced TNF-α and IL-6 Release Through Distinct Pathways in Mouse Macrophages from Different Compartments. Cell. Physiol. Biochem. 42, 2093–2104 (2017).
    Riss, T. L. et al. Cell Viability assays. Assay Guidance Manual (2004).
    Zhu, L. T. et al. TSC1 controls macrophage polarization to prevent inflam- matory disease. Nat. Commun. 5, 4696 (2014).
    Dashty, M. A quick look at biochemistry: Carbohydrate metabolism. Clin. Biochem. 46, 1339–1352 (2013).
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 86, 329–977 (1993).
    Melendez-Ramirez, L. Y., Richards, R. J. & Cefalu, W. T. Complications of type 1 diabetes. Endocrinol Metab Clin North Am. 39, 625–640 (2010).
    Marim, F. M., Silveira, T. N., Lima, D. S. Jr. & Zamboni, D. S. A method for generation of bone marrow-derived macrophages from crypreserved mouse bone marrow cells. Plos One. 5, 1–8 (2010).
    Davies, L. C., Jenkins, S. J., Allen, J. E. & Taylor, P. R. Tissue-resident macrophages. Nat. Immunol. 14, 986–995 (2013).
    Chiba et al. Diabetes impairs the interactions between long-term hematopoietic stem cells and osteopontin-positive cells in the endosteal niche of mouse bone marrow. Am J Physiol Cell Physiol. 305, C693–C703 (2013).
    Kojima, H., Kim, J. & Chan, L. Emerging roles of hematopoietic cells in the pathobiology of diabetic complications. Trends in Endocrinology and Metabolism, 1–10 (2014).
    Hazra, S. et al. Long-term type 1 diabetes influences haematopoietic stem cells by reducing vascular repair potential and increasing inflammatory monocyte generation in a murine model. Diabetologia 56, 644–653 (2013).
    Min, D. et al. Alterations in monocyte CD16 in association with diabetes complications. Mediators Inflamm. 1–10 (2012).
    Fadini, G. P. et al. Monocyte–macrophage polarization balance in pre-diabetic individuals. Acta Diabetol 50, 977–982 (2013).
    Fadini, G. O. et al. An unbalanced monocyte polarisation in peripheral blood and bone marrow of patients with type 2 diabetes has an impact on microangiopathy. Diabetologia 56, 1856–1866 (2013).
    Nitulescu, G. B. et al. Differentiation of Rat Bone Marrow Cells Into Macrophages Under the Influence of Mouse L929 Cell Supernatant. Journal of Leukocyte Biology 41, 83–91 (1987).
    Denizot, F. & Lang, R. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Meth. 89, 271–277 (1986).
    Wang, J. et al. High glucose induces alternative activation of macrophages via PI3K/Akt signaling pathway. J Recept Signal Transduct Res. 37, 409–415 (2017).
    Sun, C. et al. The Phenotype and Functional Alterations of Macrophages in Mice with Hyperglycemia for Long Term. J. Cell. Physiol. 227, 1670–1679 (2012).
    Mantegazza, A. R., Magalhaes, J. G., Amigorena, S. & Marks, M. S. Presentation of Phagocytosed Antigens by MHC Class I and II. Traffic. 14, 135–152 (2013).
    Munder, M. et al. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J. Immunol. 160, 5347–5354 (1998).
    Covarrubias, A. J., Aksoylar, H. I. & Horng, T. Control of macrophage metabolism and activation by mTOR and Akt signaling. Semin Immunol. 27, 286–296 (2015).
    Schaeffer, V. et al. Role of the mTOR pathway in LPS-activated monocytes: influence of hypertonic saline. J Surg Res 171, 769–776 (2011).
    Den Bossche, J. V., O’neill, L. A. & Menon, D. Macrophage immunometabolism: where are we (going)? Trends in Immunol. 38, 394–406 (2017).
    Kelly, B. & O’Neill, L. A. J. Metabolic reprogramming in macrophages and dendritic cells in innate immunity. Cell Res. 25, 771–784 (2015).
    Pearce, E. L. & Pearce, E. J. Metabolic pathways in im- mune cell activation and quiescence. Immunity. 38, 633–643 (2013).
    Mohammad, M. K. et al. Dysregulated Toll-like receptor expression and signaling in bone marrow- derived macrophages at the onset of diabe- tes in the non-obese diabetic mouse. Int Immunol. 18, 1101–1113 (2006).
    Luyendyk, J. P. et al. Genetic analysis of the role of the PI3K-Akt pathway in lipopolysaccharide-induced cytokine and tissue factor gene expression in mono- cytes/macrophages. J. Immunol. 180, 4218–4226 (2008).
    Vergardi, E., Leronymaki, E., Lyroni, K., Vaporidi, K. & Tsatsanis, C. Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization. J. Immunol. 198, 1006–1014 (2017).
    Nandy, D., Janardhanan, R., Mukhopadhyay, D. & Basu, A. Effect of Hyperglycemia on Human Monocyte Activation. J Investig Med. 59, 661–667 (2011).
    Kim, J. I. et al. Crystal structure of CD14 and its implications for lipopolysaccharide signaling. J. Biol. Chem. 280, 11347–11351 (2005).
    Mebratu, Y. & Tesfaigzi, Y. How ERK1/2 Activation Controls Cell Proliferation and Cell Death Is Subcellular Localization the Answer? Cell Cycle. 15, 1168–1175 (2009).
    Meloche, S. Cell cycle reentry of mammalian fibroblasts is accompanied by the sustained activation of p44mapk and p42mapk isoforms in the G1 phase and their inactivation at the G1/S transition. J Cell Physiol. 163, 986–995 (1995).
    Cheng, C. L., Chen, P. H., Lin, Y. C. & Kao, Y. H. High glucose activates Raw264.7 macrophages through RhoA kinase-mediated signaling pathway. Cell Signal 27, 283–292 (2015).
    Hua, K. F., Wang, S. & Dong, W. C. High glucose increases nitric oxide generation in lipopolysaccharide-activated macrophages by enhancing activity of protein kinase C-alpha/delta and NF-kappa B. Inflam Res. 61, 1107–1116 (2012).
    Devaraj, S., Venugopal, S. K., Singh, U. & Jialal, I. Hyperglycemia Induces Monocytic Release of Interleukin-6 via Induction of Protein Kinase C. Diab. 54 (2005).
    Hill, J. R., Kwon, G., Marshall, C. A. & Mcdaniel, M. L. Hyperglycemic Levels of Glucose Inhibit Interleukin 1 Release from RAW 264.7 Murine Macrophages by Activation of Protein Kinase C. The J of Biol Chem. 273, 3308–3313 (1998).
    Eddie, W. K., Hoshi, N., Shouval, D. S., Snapper, S. & Medzhitov, R. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages. Sci. 356, 513–519 (2017).
    Pavlou, S. et al. Sustained high glucose exposure sensitizes macrophage responses to cytokine stimuli but reduces their phagocytic activity. BMC Immunol 19, 1–13 (2018).
    Grosick, R. et al. High glucose induces a priming effect in macrophages and exacerbates the production of pro-inflammatory cytokines after a challenge. Journal of Pain Research 11, 1769–1778 (2018).
    Kaewarpai, T. & Thongboonkerd, V. High-glucose-induced changes in macrophage secretome: regulation of immune response. Molecular and Cellular Biochemistry 452, 51–52 (2019).
    Kurihara, C. et al. Hyperglycemia attenuates receptor activator of NF-kB ligandeinduced macrophage activation by suppressing of insulin signaling. Journal of Surgical Research 214, 168–175 (2017).
    Lachmands, E. et al. The Effect of Hyperglycaemia on In Vitro Cytokine Production and Macrophage Infection with Mycobacterium tuberculosis. Plos One, 1–3 (2015).
    Testa, R. et al. The “Metabolic Memory” Theory and the Early Treatment of Hyperglycemia in Prevention of Diabetic Complications. Nutrients. 9, 1–9 (2017).
    Chung, S. et al. Distinct role of FoxO1 in M-CSF- and GM-CSF-differentiated macrophages contributes LPS-mediated IL-10: implication in hyperglycemia. J Leukoc Biology. 97, 327–339 (2015).
    Sherry, C. L., O’connor, J. C., Kramer, J. M. & Freund, G. G. Augmented Lipopolysaccharide-Induced Tnf-Alpha Production By Peritoneal Macrophages In Type 2 Diabetic Mice Is Dependent On Elevated Glucose And Requires P38 Mapk. J Immunol. 178, 663–670 (2007).
    Lombardo, E., Alvares-Barrientos, A., Maroto, B., Bosca, L. & Knaus, U. G. TLR4-mediated survival of macrophages is MyD88 dependent and requires TNF-alpha autocrine signalling. J. Immunol. 178, 3731–3739 (2007).
    Ratzke, C. & Gore, J. Modifying and reacting to the environmental pH can drive bacterial interactions. Plos biology 14, 1–20 (2018).
    Kang, H. M. et al. Body size-dependent interspecific tolerance to cadmium and their molecular responses in the marine rotifer Brachionus spp. Aquatic Toxicology 206, 195–202 (2019).
    Corraliza, I. M., Campo, M. L., Soler, G. & Modolell, M. Determination of arginase activity in macrophages: a micromethod. J. Immunol. Methods. 174–231 (1994).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020