Exportar registro bibliográfico


Genomic features of high-priority Salmonella enterica serovars circulating in the food production chain, Brazil, 2000–2016 (2019)

  • Authors:
  • USP affiliated authors: LANDGRAF, MARIZA - FCF
  • Unidades: FCF
  • DOI: 10.1038/s41598-019-45838-0
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Informações sobre o DOI: 10.1038/s41598-019-45838-0 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    Download do texto completo

    Tipo Nome do arquivo Tipo de acesso Link
    2959701.pdfOpen Access logo PLoS whiteDirect link
    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MONTE, Daniel F; LINCOPAN, Nilton; BERMAN, Hanna; et al. Genomic features of high-priority Salmonella enterica serovars circulating in the food production chain, Brazil, 2000–2016. Scientific Reports, London, v. 9, p. 1-12 art. 11058, 2019. Disponível em: < http://dx.doi.org/10.1038/s41598-019-45838-0 > DOI: 10.1038/s41598-019-45838-0.
    • APA

      Monte, D. F., Lincopan, N., Berman, H., Cerdeira, L., Keelara, S., Thakur, S., et al. (2019). Genomic features of high-priority Salmonella enterica serovars circulating in the food production chain, Brazil, 2000–2016. Scientific Reports, 9, 1-12 art. 11058. doi:10.1038/s41598-019-45838-0
    • NLM

      Monte DF, Lincopan N, Berman H, Cerdeira L, Keelara S, Thakur S, Cray PJF, Landgraf M. Genomic features of high-priority Salmonella enterica serovars circulating in the food production chain, Brazil, 2000–2016 [Internet]. Scientific Reports. 2019 ; 9 1-12 art. 11058.Available from: http://dx.doi.org/10.1038/s41598-019-45838-0
    • Vancouver

      Monte DF, Lincopan N, Berman H, Cerdeira L, Keelara S, Thakur S, Cray PJF, Landgraf M. Genomic features of high-priority Salmonella enterica serovars circulating in the food production chain, Brazil, 2000–2016 [Internet]. Scientific Reports. 2019 ; 9 1-12 art. 11058.Available from: http://dx.doi.org/10.1038/s41598-019-45838-0

    Referências citadas na obra
    Tacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18, 318–327, https://doi.org/10.1016/S1473-3099(17)30753-3 (2018).
    Jacoby, G. A., Strahilevitz, J. & Hooper, D. C. Plasmid-mediated quinolone resistance. Microbiol Spectr 2, PLAS-0006-2013, https://doi.org/10.1128/microbiolspec.PLAS-0006-2013 (2014).
    Li, L. et al. Spread of oqxAB in Salmonella enterica serotype Typhimurium predominantly by IncHI2 plasmids. J Antimicrob Chemother 68, 2263–8, https://doi.org/10.1093/jac/dkt209 (2013).
    Redgrave, L. S., Sutton, S. B., Webber, M. A. & Piddock, L. J. Fluoroquinolone resistance: mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol 22, 438–45, https://doi.org/10.1016/j.tim.2014.04.007 (2014).
    Li, X. P. et al. Clonal spread of mcr-1 in PMQR-carrying ST34 Salmonella isolates from animals in China. Sci Rep 6, 38511, https://doi.org/10.1038/srep38511 (2016).
    Bevan, E. R., Jones, A. M. & Hawkey, P. M. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother 72, 2145–2155, https://doi.org/10.1093/jac/dkx146 (2017).
    Food and Drug Administration. Bacteriological analytical manual. 8th ed. Gaithersburg, Md.: AOAC International (1998).
    Grimont PAD, Weil FX. Antigenic formulae of the Salmonella serovars. Institut Pasteur, Paris, France, Centre Collaborateur OMS de Référence et de Recherche pour les Salmonella 9th ed.; [166 pp.] (2007).
    Guibourdenche, M. et al. Supplement 2003–2007 (No. 47) to the White-Kauffmann-Le Minor scheme. Res Microbiol 161, 26–9, https://doi.org/10.1016/j.resmic.2009.10.002 (2010).
    Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 27th ed. CLSI supplement M100. CLSI, Wayne, PA (2017).
    U S Food and Drug Administration (FDA). The National Antimicrobial Resistance Monitoring System Manual of Laboratory Methods. Retrieved from, https://www.fda.gov/downloads/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/UCM453381.pdf (2015).
    Monte, D. F. et al. Genome Sequencing of an Escherichia coli Sequence Type 617 Strain Isolated from Beach Ghost Shrimp (Callichirus major) from a Heavily Polluted Ecosystem Reveals a Wider Resistome against Heavy Metals and Antibiotics. Microbiol Resour Announc 8, e01471–18, https://doi.org/10.1128/MRA.01471-18 (2019).
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–9, https://doi.org/10.1093/bioinformatics/btu153 (2014).
    Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3, https://doi.org/10.1093/bioinformatics/btv421 (2015).
    Hadfield, J. et al. Phandango: an interactive viewer for bacterial population genomics. Bioinformatics 34, 292–293, https://doi.org/10.1093/bioinformatics/btx610 (2017).
    Page, A. J. et al. SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2, e000056, https://doi.org/10.1099/mgen.0.000056 (2016).
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–3, https://doi.org/10.1093/bioinformatics/btu033 (2014).
    Pattengale, N. D., Alipour, M., Bininda-Emonds, O. R., Moret, B. M. & Stamatakis, A. How many bootstrap replicates are necessary? J Comput Biol 17, 337–54, https://doi.org/10.1089/cmb.2009.0179 (2010).
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44, W242–5, https://doi.org/10.1093/nar/gkw290 (2016).
    Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18, 268–81, https://doi.org/10.1111/j.1469-0691.2011.03570.x (2012).
    Moura, Q. et al. Virulent nontyphoidal Salmonella producing CTX-M and CMY-2 β-lactamases from livestock, food and human infection, Brazil. Virulence 9, 281–286, https://doi.org/10.1080/21505594.2017.1279779 (2018).
    Hopkins, K. L., Davies, R. H. & Threlfall, E. J. Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrob Agents 25, 358–73, https://doi.org/10.1016/j.ijantimicag.2005.02.006 (2005).
    Albornoz, E. et al. qnrE1, a Member of a New Family of Plasmid-Located Quinolone Resistance Genes, Originated from the Chromosome of Enterobacter Species. Antimicrob. Agents Chemother 61, e02555–16, https://doi.org/10.1128/10.1128/AAC.02555-16 (2017).
    Cunha, M. P. V. et al. Complete DNA Sequence of an IncM1 Plasmid Bearing the Novel qnrE1 Plasmid-Mediated Quinolone Resistance Variant and bla(CTX-M-8) from Klebsiella pneumoniae Sequence Type 147. Antimicrob Agents Chemother 61, e00592–17, https://doi.org/10.1128/AAC.00592-17 (2017).
    Norizuki, C. et al. Specific bla(CTX-M-8)/IncI1 Plasmid Transfer among Genetically Diverse Escherichia coli Isolates between Humans and Chickens. Antimicrob Agents Chemother 61, e00663–17, https://doi.org/10.1128/AAC.00663-17 (2017).
    Liu, F. et al. Novel virulence gene and clustered regularly interspaced short palindromic repeat (CRISPR) multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. enterica. Appl Environ Microbiol 77, 1946–56, https://doi.org/10.1128/AEM.02625-10 (2011).
    Tang, T., Cheng, A., Wang, M. & Li, X. Reviews in Salmonella Typhimurium PhoP/PhoQ two-component regulatory system. Rev Med Microbiol 24, 18–21, https://doi.org/10.1097/MRM.0b013e32835a9490 (2013).
    Marcus, S. L., Brumell, J. H., Pfeifer, C. G. & Finlay, B. B. Salmonella pathogenicity islands: big virulence in small packages. Microbes Infect 2, 145–56, https://doi.org/10.1016/S1286-4579(00)00273-2 (2000).
    Abd El Ghany, M. et al. Genomic and Phenotypic Analyses Reveal the Emergence of an Atypical Salmonella enterica Serovar Senftenberg Variant in China. J Clin Microbiol 54, 2014–22, https://doi.org/10.1128/JCM.00052-16. (2016).
    Roer, L. et al. Is the Evolution of Salmonella enterica subsp. Enterica Linked to Restriction-Modification Systems? mSystems 1, e00009–16, https://doi.org/10.1128/mSystems.00009-16 (2016).
    Ellis, M. J., Trussler, R. S., Charles, O. & Haniford, D. B. A transposon-derived small RNA regulates gene expression in Salmonella Typhimurium. Nucleic Acids Res 45, 5470–5486, https://doi.org/10.1093/nar/gkx094 (2017).
    Ellis, M. J. et al. Silent but deadly: IS200 promotes pathogenicity in Salmonella Typhimurium. RNA Biol 15, 176–181, https://doi.org/10.1080/15476286.2017.1403001 (2018).
    Timme, R. E. et al. Phylogenetic diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from genome-wide reference-free SNP characters. Genome Biol Evol 5, 2109–23, https://doi.org/10.1093/gbe/evt159 (2013).
    Monte, D. F., Lincopan, N., Fedorka-Cray, P. & Landgraf, M. Current Insights on High Priority Antibiotic-Resistant Salmonella enterica in Food and Foodstuffs: A review. Curr Opin Food Sci 26, 35–46, https://doi.org/10.1016/j.cofs.2019.03.004 (2019).
    Le Hello, S. et al. Highly drug-resistant Salmonella enterica serotype Kentucky ST198-X1: a microbiological study. Lancet Infect Dis 13, 672–679, https://doi.org/10.1016/s1473-3099(13)70124-5 (2013).
    Tyson, G. H. et al. Identification of Plasmid-Mediated Quinolone Resistance in Salmonella Isolated from Swine Ceca and Retail Pork Chops in the United States. Antimicrob Agents Chemother 61, e01318–17, https://doi.org/10.1128/AAC.01318-17 (2017).
    Karczmarczyk, M. et al. Fanning S. Characterization of antimicrobial resistance in Salmonella enterica food and animal isolates from Colombia: identification of a qnrB19-mediated quinolone resistance marker in two novel serovars. FEMS Microbiol Lett 313, 10–9, https://doi.org/10.1111/j.1574-6968.2010.02119.x (2010).
    González, F. & Araque, M. Association of Transferable Quinolone Resistance Determinant qnrB19 with Extended-Spectrum β -Lactamases in Salmonella Give and Salmonella Heidelberg in Venezuela. Int J Microbiol 2013, 1–6, https://doi.org/10.1155/2013/628185 (2013).
    Wasyl, D., Hoszowski, A. & Zając, M. Prevalence and characterisation of quinolone resistance mechanisms in Salmonella spp. Vet Microbiol 171, 307–14, https://doi.org/10.1016/j.vetmic.2014.01.040 (2014).
    Ferrari, R. et al. Plasmid-mediated quinolone resistance by genes qnrA1 and qnrB19 in Salmonella strains isolated in Brazil. J Infect Dev Ctries 5, 496–8, https://doi.org/10.3855/jidc.1735 (2011).
    Paiva, M. C., Nascimento, A. M., Camargo, I. L., Lima-Bittencourt, C. I. & Nardi, R. M. The first report of the qnrB19, qnrS1 and aac(6′)-Ib-cr genes in urinary isolates of ciprofloxacin-resistant Escherichia coli in Brazil. Mem Inst Oswaldo Cruz 107, 687–9, https://doi.org/10.1590/S0074-02762012000500018 (2012).
    Cunha, M. P. et al. Coexistence of CTX-M-2, CTX-M-55, CMY-2, FosA3, and QnrB19 in Extraintestinal Pathogenic Escherichia coli from Poultry in Brazil. Antimicrob Agents Chemother 61, e02474–16, https://doi.org/10.1128/AAC.02474-16 (2017).
    Viana, A. L. et al. Extended-spectrum β-lactamases in Enterobacteriaceae isolated in Brazil carry distinct types of plasmid-mediated quinolone resistance genes. J Med Microbiol 62, 1326–31, https://doi.org/10.1099/jmm.0.055970-0 (2013).
    Martins, W. M. et al. Coproduction of KPC-2 and QnrB19 in Klebsiella pneumoniae ST340 isolate in Brazil. Diagn Microbiol Infect Dis 83, 375–6, https://doi.org/10.1016/j.diagmicrobio.2015.09.003 (2015).
    Andrade, L. N. et al. Expansion and evolution of a virulent, extensively drug-resistant (polymyxin B-resistant), QnrS1-, CTX-M-2-, and KPC-2-producing Klebsiella pneumoniae ST11 international high-risk clone. J Clin Microbiol 52, 2530–5, https://doi.org/10.1128/JCM.00088-14 (2014).
    Araujo, B. F. et al. Clinical and Molecular Epidemiology of Multidrug-Resistant P. aeruginosa Carrying aac(6′)-Ib-cr, qnrS1 and bla SPM Genes in Brazil. PLoS One 11, e0155914, https://doi.org/10.1371/journal.pone.0155914 (2016).
    Sjölund-Karlsson, M. et al. CTX-M-producing non-Typhi Salmonella spp. isolated from humans, United States. Emerg Infect Dis 17, 97–9, https://doi.org/10.3201/eid1701.100511 (2011).
    Card, R. M. et al. An In Vitro Chicken Gut Model Demonstrates Transfer of a Multidrug Resistance Plasmid from Salmonella to Commensal Escherichia coli. MBio 8, e00777–17, https://doi.org/10.1128/mBio.00777-17 (2017).
    Brown, A. C. et al. CTX-M-65 Extended-Spectrum β-Lactamase-Producing Salmonella enterica Serotype Infantis, United States. Emerg Infect Dis 24, 2284–2291, https://doi.org/10.3201/eid2412.180500 (2018).
    Rehman, M. A., Yin, X., Persaud-Lachhman, M. G. & Diarra, M. S. First Detection of a Fosfomycin Resistance Gene, fosA7, in Salmonella enterica Serovar Heidelberg Isolated from Broiler Chickens. Antimicrob Agents Chemother 61, e00410, https://doi.org/10.1128/AAC.00410-17 (2017).
    Ramachandran, G. et al. Virulence of invasive Salmonella Typhimurium ST313 in animal models of infection. PLoS Negl Trop Dis 11, e0005697, https://doi.org/10.1371/journal.pntd.0005697 (2017).
    Hammarlöf, D. L. et al. Role of a single noncoding nucleotide in the evolution of an epidemic African clade of Salmonella. Proc Natl Acad Sci USA 115, E2614–E2623, https://doi.org/10.1073/pnas.1714718115 (2018).
    Panzenhagen, P. H. N. et al. Genetically distinct lineages of Salmonella Typhimurium ST313 and ST19 are present in Brazil. Int J Med Microbiol 308, 306–316, https://doi.org/10.1016/j.ijmm.2018.01.005 (2018).
    Hauser, E. et al. Clonal dissemination of Salmonella enterica serovar Infantis in Germany. Foodborne Pathog Dis 9, 352–60, https://doi.org/10.1089/fpd.2011.1038 (2012).
    Almeida, F., Pitondo-Silva, A., Oliveira, M. A. & Falcão, J. P. Molecular epidemiology and virulence markers of Salmonella Infantis isolated over 25 years in São Paulo State, Brazil. Infect Genet Evol 19, 145–51, https://doi.org/10.1016/j.meegid.2013.07.004 (2013).
    Silva, K. C. et al. Emergence of extended-spectrum–lactamase CTX-M-2-producing Salmonella enterica serovars Schwarzengrund and Agona in poultry farms. Antimicrob Agents Chemother 57, 3458–3459, https://doi.org/10.1128/AAC.05992-11.19 (2013).
    Jure, M. A. et al. Emergence of KPC-2-Producing Salmonella enterica Serotype Schwarzengrund in Argentina. Antimicrob Agents Chemother 58, 6335–6, https://doi.org/10.1128/AAC.03322-14 (2014).
    Moreno, L. Z. et al. First report of mcr-1-harboring Salmonella enterica serovar Schwarzengrund isolated from poultry meat in Brazil. Diagn Microbiol Infect Dis 0, S0732-8893(18)30561–3, https://doi.org/10.1016/j.diagmicrobio.2018.10.016 (2018).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020