Exportar registro bibliográfico


Gastropod shell size and architecture influence the applicability of methods used to estimate internal volume (2018)

  • Authors:
  • Unidade: IO
  • DOI: 10.1038/s41598-017-18906-6
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41598-017-18906-6 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      RAGAGNIN, Marilia Nagata; GORMAN, Daniel; MCCARTHY, Ian Donald; et al. Gastropod shell size and architecture influence the applicability of methods used to estimate internal volume. Open access scientific reports, Los Angeles, v. 8, p. 1-11, 2018. Disponível em: < https://doi.org/10.1038/s41598-017-18906-6 > DOI: 10.1038/s41598-017-18906-6.
    • APA

      Ragagnin, M. N., Gorman, D., McCarthy, I. D., Sant’Anna, B. S., Castro, C. C. de, & Turra, A. (2018). Gastropod shell size and architecture influence the applicability of methods used to estimate internal volume. Open access scientific reports, 8, 1-11. doi:10.1038/s41598-017-18906-6
    • NLM

      Ragagnin MN, Gorman D, McCarthy ID, Sant’Anna BS, Castro CC de, Turra A. Gastropod shell size and architecture influence the applicability of methods used to estimate internal volume [Internet]. Open access scientific reports. 2018 ; 8 1-11.Available from: https://doi.org/10.1038/s41598-017-18906-6
    • Vancouver

      Ragagnin MN, Gorman D, McCarthy ID, Sant’Anna BS, Castro CC de, Turra A. Gastropod shell size and architecture influence the applicability of methods used to estimate internal volume [Internet]. Open access scientific reports. 2018 ; 8 1-11.Available from: https://doi.org/10.1038/s41598-017-18906-6

    Referências citadas na obra
    Hazlett, B. A. The behavioral ecology of hermit crabs. Annu. Rev. Ecol. Syst. 12, 1–22 (1981).
    Reese, E. S. Shell selection behavior of hermit crabs. Anim. Behav. 10, 347–360 (1962).
    Bertness, M. D. Conflicting advantages in resource utilization: The hermit crab housing dilemma. Amer. Nat. 118, 432–437 (1981).
    Ragagnin, M. N. et al. What makes a good home for hermits? Assessing gastropod shell density and relative strength. Mar. Biol. Res. 12, 379–388 (2016).
    Conover, M. R. The importance of various shell characteristics to the shell-selection behavior of hermit crabs. J. Exp. Mar. Biol. Ecol. 32, 131–142 (1978).
    Gorman, D., Barros, F. & Turra, A. What motivates hermit crabs to abandon trapped shells? Assessing the influence of shell value, olfactory attractants, and previous experience. Hydrobiologia 743, 285–297 (2015).
    Reeve, H. K. The evolution of conspecific acceptance thresholds. Amer. Nat. 133, 407–435 (1989).
    Shumway, S. E. Osmotic balance and respiration in the hermit crab, Pagurus bernhardus, exposed to fluctuating salinities. J. Mar. Biol. Assoc. UK. 58, 869–876 (1978).
    Taylor, P. R. Hermit crab fitness: the effect of shell condition and behavioral adaptations on environmental resistance. J. Exp. Mar. Biol. Ecol. 52, 205–218 (1981).
    Scully, E. P. The effects of gastropod shell availability and habitat characteristics on shell utilization by the intertidal hermit crab Pagurus longicarpus Say. J. Exp. Mar. Biol. Ecol. 37, 139–152 (1979).
    Turra, A. & Leite, F. P. P. Shell-size selection by intertidal sympatric hermit crabs. Mar. Biol. 145, 251–257 (2004).
    Osorno, J. L., Fernández-Casillas, L. & Rodríguez-Juárez, C. Are hermit crabs looking for light and large shells?: Evidence from natural and field induced shell exchanges. J. Exp. Mar. Biol. Ecol. 222, 163–173 (1998).
    Fotheringham, N. Population consequences of shell utilization by hermit crabs. Ecology. 57, 570–578 (1976).
    Bertness, M. D. The influence of shell-type on hermit crab growth rate and clutch size (Decapoda, Anomura). Crustaceana 40, 197–205 (1981).
    Brown, J. L., Hazlett, B. A. & Kaster, C. H. Factors affecting the shell assessment behaviour of the hermit crab, Calcinus tibicen (Herbst, 1791) (Decapoda, Paguridea). Crustaceana 64, 66–75 (1993).
    Mantelatto, F. L. M. & Garcia, R. B. Shell utilization pattern of the hermit crab Calcinus tibicen (Diogenidae) from Southern Brazil. J. Crustacean Biol. 20, 460–467 (2000).
    Mantelatto, F. L. M. & Dominciano, L. C. Pattern of shell utilization by the hermit crab Paguristes tortugae (Diogenidae) from Anchieta Island, southern Brazil. Sci. Mar. 66, 265–272 (2002).
    Mantelatto, F. L. M. & Meireles, A. L. The importance of shell occupation and shell availability in the hermit crab Pagurus brevidactylus (Stimpson, 1859) (Paguridae) population from the southern Atlantic. Bull. Mar. Sci. 75, 27–35 (2004).
    Hazlett, B. A., Rittschof, D. & Bach, C. E. The effects of shell size and coil orientation on reproduction in female hermit crabs. Clibanarius vittatus. J. Exp. Mar. Biol. Ecol. 323, 93–99 (2005).
    Iossi, C., Biagi, R. & Mantelatto, F. L. M. Egg production and shell relationship of the hermit crab Pagurus brevidactylus (Anomura: Paguridae) from southern Brazil. Anim. Biol. 55, 111–121 (2005).
    Terossi, M., Espósito, D. L. A., Meireles, A. L., Biagi, R. & Mantelatto, F. L. M. Pattern of shell occupation by the hermit crab Pagurus exilis (Anomura, Paguridae) on the northern coast of São Paulo State, Brazil. J. Nat. Hist. 40, 77–87 (2006).
    Torati, L. S. & Mantelatto, F. L. M. Uncommon mechanism of egg incubation in the endemic Southern hermit crab Loxopagurus loxochelis: how is this phenomenon related to egg production? Acta Zool. 89, 79–85 (2008).
    Fantucci, M. Z., Biagi, R., Meireles, A. L. & Mantelatto, F. L. M. Shell occupation by the endemic western Atlantic hermit crab Isocheles sawayai (Diogenidae) from Caraguatatuba, Brazil. Nauplius 17, 37–47 (2009).
    Ayres-Peres, L., Quadros, A. F. & Mantelatto, F. L. M. Comparative analysis of shell occupation by two southern populations of the hermit crab Loxopagurus loxochelis (Decapoda, Diogenidae). Braz. J. Oceanogr. 60, 299–310 (2012).
    Floeter, S. R., Nalesso, R. C., Rodrigues, M. M. P. & Turra, A. Patterns of shell utilization and selection in two sympatric hermit crabs (Anomura: Diogenidae) in south-eastern Brazil. J. Mar. Biol. Assoc. UK. 80, 1053–1059 (2000).
    Briffa, M. & Elwood, R. W. Metabolic consequences of shell choice in Pagurus bernhardus: do hermit crabs prefer cryptic or portable shells? Behav. Ecol. Sociobiol. 59, 143–148 (2005).
    Sallam, W. S., Mantelatto, F. L. M. & Hanafy, M. H. Shell utilization by the land hermit crab Coenobita scaevola (Anomura, Coenobitidae) from Wadi El-Gemal, Red Sea. Belg. J. Zool. 138, 13–19 (2008).
    Ismail, T. G. E. K. Distribution and shell selection by two hermit crabs in different habitats on Egyptian Red Sea Coast. Acta Oecol. 36, 314–324 (2010).
    Marschallinger, R., Hofmann, P., Daxner-Höck, G. & Ketcham, R. A. Solid modeling of fossil small mammal teeth. Comput. Geosci. 37, 1364–1371 (2011).
    Rodrigues, A. F. & Vitral, R. W. Aplicações da Tomografia Computadorizada naOdontologia. Pesqui. Bras. Odontopediatria Clin. Integr. 7, 317–324 (2007).
    Gardner, C., Rush, M. & Bevilacqua, T. Nonlethal imaging techniques for crab spermathecae. J. Crustacean Biol. 18, 64–69 (1998).
    Halley, J. D., Burd, M. & Wells, P. Excavation and architecture of Argentine ant nests. Insec. Soc. 52, 350–356 (2005).
    Voss, M., Asbach, P. & Hilger, A. Vertebral anomaly in fossil sea cows (Mammalia, Sirenia). Anat. Rec. 294, 980–986 (2011).
    Higgs, N. D. et al. Evidence of Osedax worm borings in Pliocene (~3 Ma) whale bone from the Mediterranean. Hist. Biol. 24, 269–277 (2012).
    Onillon, J. C., Maignet, P. & Garzia, G. T. Development of a methodology to study the intrinsic rate of increase of whitefly parasitoids: design of an oviposition device. B. Insectol. 62, 221–228 (2009).
    Valant, J., Iavicoli, I. & Drobne, D. The importance of a validated standard methodology to define in vitro toxicity of nano-TiO2. Protoplasma 249, 493–502 (2012).
    Berre, D. et al. A methodology to explore the determinants of eco-efficiency by combining an agronomic whole-farm simulation model and efficient frontier. Environ. Modell. Softw. 71, 46–59 (2015).
    Angeli, A., Zara, F. J., Turra, A. & Gorman, D. Towards a standard measure of sea anemone size: assessing the accuracy and precision of morphological measures for cantilever-like animals. Mar. Ecol. 36, 1019–1026 (2016).
    Oita, A., Nagano, I. & Matsuda, H. An improved methodology for calculating the nitrogen footprint of seafood. Ecol. Indic. 60, 1091–1103 (2016).
    Gorman, D., Sikinger, C. E. & Turra, A. Spatial and temporal variation in the predation risk for hermit crabs in a subtropical bay. J. Exp. Mar. Biol. Ecol. 743, 285–297 (2015).
    Turra, A. & Gorman, D. Subjective resource value and shell abandoning behavior in hermit crabs. J. Exp. Mar. Biol. Ecol. 452, 137–142 (2014).
    Holdsworth, D. W. & Thornton, M. M. Micro-CT in small animal and specimen imaging. Trends Biotechnol. 20, S34–S39 (2002).
    Badea, C. T., Drangova, M., Holdsworth, D. W. & Johnson, G. A. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys. Med. Biol. 53, R319–R350 (2008).
    Metscher, B. D. MicroCT for comparative morphology: simple staining methods allow high-contrast 3D imaging of diverse non-mineralized animal tissues. BMC Physiol. 9, 11, https://doi.org/10.1186/1472-6793-9-11 (2009).
    Schambach, S., Bag, S., Schilling, L., Groden, C. & Brockmann, M. A. Application of micro-CT in small animal imaging. Methods 50, 2–13 (2010).
    Li, H., Zhang, H., Tang, Z. & Hu, G. Micro-computed tomography for small animal imaging: Technological details. Prog. Nat. Sci. 18, 513–521 (2008).
    Jorgensen, S. M., Demirkaya, O. & Ritman, E. L. Three-dimensional imaging of vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am. J. Physiol. 275, H1103–H1114 (1998).
    Wildenschild, D. et al. Using X-ray computed tomography ion hydrology: systems, resolutions, and limitations. J. Hydrol. 267, 285–297 (2002).
    Ionescu, M. et al. Spatial resolution limits of Multislice Computed Tomography (MS-CT), C-arm-CT, and Flat Panel-CT (FP-CT) compared to MicroCT for visualization of a small metallic stent. Acad. Radiol. 18, 866–875 (2011).
    Batista-Leite, L. D. M. A., Coelho, P. A. & Calado, T. C. S. Estrutura populacional e utilização de conchas pelo caranguejo ermitão Calcinus tibicen (Herbst, 1791) (Crustacea, Decapoda, Iogenidae). Trop. Oceanogr. 33, 99–116 (2005).
    Galindo, L. A., Bolanos, J. A. & Mantelatto, F. L. M. Shell utilization pattern by the hermit crab Isocheles sawayai Forest and Saint Laurent, 1968 (Anomura, Diogenidae) from Margarita Island, Caribbean Sea, Venezuela. Gulf Caribb. Res. 20, 49–57 (2008).
    Barnes, J. E. Characteristics and control of contrast in CT. RadioGraphics. 12, 825–837 (1992).
    Lessells, C. M. & Boag, P. T. Unrepeatable repeatabilities: a common mistake. The Auk 104, 116–121 (1987).
    Dominciano, L. C. C., Sant’Anna, B. S. & Turra, A. Are the preference and selection patterns of hermit crabs for gastropod shells species- or site-specific? J. Exp. Mar. Biol. Ecol. 378, 15–21 (2009).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021