Continuity of attractors for C 1 perturbations of a smooth domain (2019)
- Autor:
- Autor USP: PEREIRA, ANTONIO LUIZ - IME
- Unidade: IME
- Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS
- Language: Inglês
- Imprenta:
- Publisher: ICMC-USP
- Publisher place: São Carlos
- Date published: 2019
- Source:
- Título: Abstracts
- Conference titles: ICMC Summer Meeting on Differential Equations
-
ABNT
PEREIRA, Antônio Luiz. Continuity of attractors for C 1 perturbations of a smooth domain. 2019, Anais.. São Carlos: ICMC-USP, 2019. Disponível em: http://summer.icmc.usp.br/summers/summer19/download/Summer19.pdf. Acesso em: 09 jan. 2026. -
APA
Pereira, A. L. (2019). Continuity of attractors for C 1 perturbations of a smooth domain. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer19/download/Summer19.pdf -
NLM
Pereira AL. Continuity of attractors for C 1 perturbations of a smooth domain [Internet]. Abstracts. 2019 ;[citado 2026 jan. 09 ] Available from: http://summer.icmc.usp.br/summers/summer19/download/Summer19.pdf -
Vancouver
Pereira AL. Continuity of attractors for C 1 perturbations of a smooth domain [Internet]. Abstracts. 2019 ;[citado 2026 jan. 09 ] Available from: http://summer.icmc.usp.br/summers/summer19/download/Summer19.pdf - Exponential trichotomies and continuity of invariant manifolds
- Orbitas periodicas de campo em dimensao 2
- Chaves e portas
- Invariant manifolds and limiting equations for a hyperbolic problem
- Generic hyperbolicity for scalar parabolic equations
- Global attractor and nonhomogeneous equilibria for a nonlocal evolution equation in an unbounded domain
- Autovalores de laplaciano em regioes simetricas
- Generic hyperbolicity for the equilibria of the one-dimensional parabolic equation ut=(a(x)ux)x+f(u)
- A generic property for the eigenfunctions of the Laplacian
- Eigenvalues of the Laplacian on symmetric regions
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2949088.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
