Exportar registro bibliográfico


Metrics:

Integrating biochemical, morpho-physiological, nutritional, and productive responses to Cd accumulation in Massai grass employed in phytoremediation (2019)

  • Authors:
  • USP affiliated author: LAVRES JUNIOR, JOSÉ - CENA
  • School: CENA
  • DOI: 10.1007/s11270-019-4167-0
  • Subjects: GRAMÍNEAS FORRAGEIRAS; CÁDMIO; FLORESTAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • DOI
    Informações sobre o DOI: 10.1007/s11270-019-4167-0 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      RABÊLO, Flávio Henrique Silveira e MORAL, Rafael de Andrade e LAVRES JUNIOR, José. Integrating biochemical, morpho-physiological, nutritional, and productive responses to Cd accumulation in Massai grass employed in phytoremediation. Water, Air, and Soil Pollution, v. 230, p. 110, 2019Tradução . . Acesso em: 01 jul. 2022.
    • APA

      Rabêlo, F. H. S., Moral, R. de A., & Lavres Junior, J. (2019). Integrating biochemical, morpho-physiological, nutritional, and productive responses to Cd accumulation in Massai grass employed in phytoremediation. Water, Air, and Soil Pollution, 230, 110. doi:10.1007/s11270-019-4167-0
    • NLM

      Rabêlo FHS, Moral R de A, Lavres Junior J. Integrating biochemical, morpho-physiological, nutritional, and productive responses to Cd accumulation in Massai grass employed in phytoremediation. Water, Air, and Soil Pollution. 2019 ; 230 110.[citado 2022 jul. 01 ]
    • Vancouver

      Rabêlo FHS, Moral R de A, Lavres Junior J. Integrating biochemical, morpho-physiological, nutritional, and productive responses to Cd accumulation in Massai grass employed in phytoremediation. Water, Air, and Soil Pollution. 2019 ; 230 110.[citado 2022 jul. 01 ]

    Referências citadas na obra
    Bashir, H., Qureshi, M. I., Ibrahim, M. M., & Iqbal, M. (2015a). Chloroplast and photosystems: impact of cadmium and iron deficiency. Photosynthetica, 53, 321–335.
    Bashir, H., Ibrahim, M. M., Bagheri, R., Ahmad, J., Arif, I. A., Baig, M. A., & Qureshi, M. I. (2015b). Influence of sulfur and cadmium on antioxidants, phytochelatins and growth in Indian mustard. AoB Plants, 7, plv001.
    Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
    Christensen, K. K., & Sand-Jensen, K. (1998). Precipitated iron and manganese plaques restrict root uptake of phosphorus in Lobelia dortmanna. Canadian Journal of Botany, 76, 2158–2163.
    Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707–1719.
    Clemens, S., Aarts, M. G. M., Thomine, S., & Verbruggen, N. (2013). Plant science: the key to preventing slow cadmium poisoning. Trends in Plant Science, 18, 92–99.
    Cobbett, C., & Goldsbrough, P. (2002). Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159–182.
    Dong, Y., Silbermann, M., Speiser, A., Forieri, I., Linster, E., Poschet, G., Samami, A. A., Watanabe, M., Sticht, C., Teleman, A. A., Deragon, J., Saito, K., Hell, R., & Wirtz, M. (2017). Sulfur availability regulates plant growth via glucose-TOR signaling. Nature Communications, 8, 1174.
    Du, J., Yan, C., & Li, Z. (2013). Formation of iron plaque on mangrove Kandalar. Obovata (S.L.) root surfaces and its role in cadmium uptake and translocation. Marine Pollution Bulletin, 74, 105–109.
    Ekvall, L., & Greger, M. (2003). Effects of environmental biomass-producing factors on Cd uptake in two Swedish ecotypes of Pinus sylvestris. Environmental Pollution, 121, 401–411.
    Gallego, S. M., Pena, L. B., Barcia, R. A., Azpilicueta, C. E., Iannone, M. F., Rosales, E. P., Zawoznik, M. S., Groppa, M. D., & Benavides, M. P. (2012). Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environmental and Experimental Botany, 83, 33–46.
    Hoagland, D., & Arnon, D. I. (1950). The water culture method for growing plants without soil. Berkeley: California Agricultural Experimental Station.
    Joshi, V., Joung, J. G., Fei, Z., & Jander, G. (2010). Interdependence of threonine, methionine and isoleucine metabolism in plants: accumulation and transcriptional regulation under abiotic stress. Amino Acids, 39, 933–947.
    Jozefczak, M., Bohler, S., Schat, H., Horemans, N., Guisez, Y., Remans, T., Vangronsveld, J., & Cuypers, A. (2015). Both the concentration and redox state of glutathione and ascorbate influence the sensitivity of Arabidopsis to cadmium. Annals of Botany, 116, 601–612.
    Kasukabe, Y., He, L., Nada, K., Misawa, S., Ihara, I., & Tachibana, S. (2004). Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant & Cell Physiology, 45, 712–722.
    Keunen, E., Peshev, D., Vangronsveld, J., Van Den Ende, W., & Cuypers, A. (2013). Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant, Cell & Environment, 36, 1242–1255.
    Khan, M. A., Khan, S., Khan, A., & Alam, M. (2017). Soil contamination with cadmium, consequences and remediation using organic amendments. The Science of the Total Environment, 601-602, 1591–1605.
    Kono, Y., & Fridovich, I. (1982). Superoxide radical inhibits catalase. The Journal of Biological Chemistry, 257, 5751–5754.
    Lux, A., Martinka, M., Vaculík, M., & White, P. J. (2011). Root responses to cadmium in the rhizosphere: a review. Journal of Experimental Botany, 62, 21–37.
    Marzban, L., Akhzari, D., Ariapour, A., Mohammadparast, B., & Pessarakli, M. (2017). Effects of cadmium stress on seedlings of various rangeland plant species (Avena fatua L., Lathyrus sativus L., and Lolium temulentum L.): growth, physiological traits, and cadmium accumulation. Journal of Plant Nutrition, 40, 2127–2137.
    Mendoza-Cózatl, D., Loza-Tavera, H., Hernández-Navarro, A., & Moreno-Sánchez, R. (2005). Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiology Reviews, 29, 653–671.
    Montgomery, D. C. (1984). Design and analysis of experiments (2nd ed.). New York: Wiley.
    Nawrot, T. S., Staessen, J. A., Roels, H. A., Munters, E., Cuypers, A., Richart, T., Ruttens, A., Smeets, K., Clijsters, H., & Vangronsveld, J. (2010). Cadmium exposure in the population: from health risks to strategies of prevention. Biometals, 23, 769–782.
    R Core Team (2017) [software]. R Foundation for Statistical Computing, Vienna.
    Rabêlo, F. H. S., & Borgo, L. (2016). Changes caused by heavy metals in micronutrient content and antioxidant system of forage grasses used for phytoremediation: an overview. Ciencia Rural, 46, 1368–1375.
    Rabêlo, F. H. S., Azevedo, R. A., & Monteiro, F. A. (2017a). Proper supply of S increases GSH synthesis in the establishment and reduces tiller mortality during the regrowth of Tanzania guinea grass used for Cd phytoextraction. Journal of Soils and Sediments, 17, 1427–1436.
    Rabêlo, F. H. S., Azevedo, R. A., & Monteiro, F. A. (2017b). The proper supply of S increases amino acid synthesis and antioxidant enzyme activity in Tanzania guinea grass used for Cd phytoextraction. Water, Air, and Soil Pollution, 228, 394.
    Rabêlo, F. H. S., Jordão, L. T., & Lavres, J. (2017c). A glimpse into the symplastic and apoplastic Cd uptake by Massai grass modulated by sulfur nutrition: Plants well-nourished with S as a strategy for phytoextraction. Plant Physiology and Biochemistry, 121, 48–57.
    Rabêlo, F. H. S., Borgo, L., & Lavres, J. (2018a). The use of forage grasses for the phytoremediation of heavy metals: plant tolerance mechanisms, classifications, and new prospects. In V. Matichenkov (Ed.), Phytoremediation: methods, management and assessment (pp. 59–103). New York: Nova Science Publishers.
    Rabêlo, F. H. S., Lux, A., Rossi, M. L., Martinelli, A. P., Cuypers, A., & Lavres, J. (2018b). Adequate S supply reduces the damage of high Cd exposure in roots and increases N, S and Mn uptake by Massai grass grown in hydroponics. Environmental and Experimental Botany, 148, 35–46.
    Rabêlo, F. H. S., Fernie, A. R., Navazas, A., Borgo, L., Keunen, E., Silva, B. K. A., Cuypers, A., & Lavres, J. (2018c). A glimpse into the effect of sulfur supply on metabolite profiling, glutathione and phytochelatins in Panicum maximum cv. Massai exposed to cadmium. Environmental and Experimental Botany, 151, 76–88.
    Rabêlo, F. H. S., Silva, B. K. A., Borgo, L., Keunen, E., Rossi, M. L., Borges, K. L. R., Santos, E. F., Reis, A. R., Martinelli, A. P., Azevedo, R. A., Cuypers, A., & Lavres, J. (2018d). Enzymatic antioxidants - relevant or not to protect the photosynthetic system against cadmium-induced stress in Massai grass supplied with sulfur? Environmental and Experimental Botany, 155, 702–717.
    Redovniković, I. R., De Marco, A., Proietti, C., Hanousek, K., Sedak, M., Bilandžić, N., & Jakovljević, T. (2017). Poplar response to cadmium and lead soil contamination. Ecotoxicology and Environmental Safety, 144, 482–489.
    Reeves, R. D., Baker, A. J. M., Jaffré, T., Erskine, P. D., Echevarria, G., & van der Ent, A. (2017). A global database for plants that hyperaccumulate metal and metalloid trace elements. The New Phytologist, 218, 407–411.
    Santos, F. S., Amaral Sobrinho, N. M. B., Mazur, N., Garbisu, C., Barrutia, O., & Becerril, J. M. (2011). Antioxidant response, phytochelatins formation and photoprotective pigment composition in Brachiaria decumbens Stapf subjected to contamination with cd and Zn. Quim Nova, 34, 16–20.
    Sarwar, N., Saifullah, M. S. S., Zia, M. H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90, 925–937.
    SAS Institute. (2008). Version 9.2. [software]. Cary: SAS Institute.
    Schützendübel, A., Nikolova, P., Rudolf, C., & Polle, A. (2002). Cadmium and H2O2 induced oxidative stress in Populus × canescens roots. Plant Physiology and Biochemistry, 40, 577–584.
    van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil, 362, 319–334.
    Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., Thewys, T., Vassilev, A., Meers, E., Nehnevajova, E., van der Lelie, D., & Mench, M. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16, 765–794.
    Vázquez, S., Goldsbrough, P., & Carpena, R. O. (2006). Assessing the relative contributions of phytochelatins and the cell wall to cadmium resistance in white lupin. Physiologia Plantarum, 128, 487–495.
    Wang, Q., Liang, X., Dong, Y., Xu, L., Zhang, X., Hou, J., & Fan, Z. (2013). Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regulation, 69, 11–20.
    Wilkins, D. A. (1978). The measurement of tolerance to edaphic factors by means of root growth. New Phytol, 80, 623–633.
    Yu, H., Liu, C., Zhu, J., Li, F., Deng, D., Wang, Q., & Liu, C. (2016). Cadmium availability in rice paddy fields from a mining area: the effects of soil properties highlighting iron fractions and pH value. Environmental Pollution, 209, 38–45.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2022