Group rings over 'Z IND. (p)' with FC unit groups (1980)
- Authors:
- Autor USP: MILIES, FRANCISCO CESAR POLCINO - IME
- Unidade: IME
- DOI: 10.4153/CJM-1980-095-8
- Assunto: ANÉIS DE GRUPOS
- Language: Inglês
- Imprenta:
- Source:
- Título: Canadian Mathematical Bulletin
- ISSN: 1496-4287
- Volume/Número/Paginação/Ano: v. 32, n.5 , p. 1266–1269, 1980
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MERKLEN GOLDSCHMIDT, Hector Alfredo e POLCINO MILIES, Francisco César. Group rings over 'Z IND. (p)' with FC unit groups. Canadian Mathematical Bulletin, v. 32, n. 5 , p. 1266–1269, 1980Tradução . . Disponível em: https://doi.org/10.4153/CJM-1980-095-8. Acesso em: 22 jan. 2026. -
APA
Merklen Goldschmidt, H. A., & Polcino Milies, F. C. (1980). Group rings over 'Z IND. (p)' with FC unit groups. Canadian Mathematical Bulletin, 32( 5 ), 1266–1269. doi:10.4153/CJM-1980-095-8 -
NLM
Merklen Goldschmidt HA, Polcino Milies FC. Group rings over 'Z IND. (p)' with FC unit groups [Internet]. Canadian Mathematical Bulletin. 1980 ; 32( 5 ): 1266–1269.[citado 2026 jan. 22 ] Available from: https://doi.org/10.4153/CJM-1980-095-8 -
Vancouver
Merklen Goldschmidt HA, Polcino Milies FC. Group rings over 'Z IND. (p)' with FC unit groups [Internet]. Canadian Mathematical Bulletin. 1980 ; 32( 5 ): 1266–1269.[citado 2026 jan. 22 ] Available from: https://doi.org/10.4153/CJM-1980-095-8 - Oriented involutions and skew-symmetric elements in group rings
- Torsion units in integral group rings of metacyclic groups
- Units of group rings: a short survey
- Normal subloops in the integral loop ring of an loop
- Conjugacy classes of the group of units in group algebras of finite p-groups
- Moufang unit loops torsion over their centres
- Group rings whose units form an FC-group
- Group rings whose torsion units form a subgroup II
- On a conjecture of Zassenhaus in an alternative setting
- A note on derivations of group rings
Informações sobre o DOI: 10.4153/CJM-1980-095-8 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
