Comprehensive characterization of cancer driver genes and mutations (2018)
- Authors:
- USP affiliated authors: NOUSHMEHR, HOUTAN - FMRP ; CARLOTTI JUNIOR, CARLOS GILBERTO - FMRP ; SANTOS, JOSÉ SEBASTIÃO DOS - FMRP ; KEMP, RAFAEL - FMRP ; SANKARANKUTTY, AJITH KUMAR - FMRP ; TIRAPELLI, DANIELA PRETTI DA CUNHA - FMRP
- Unidade: FMRP
- DOI: 10.1016/j.cell.2018.02.060
- Subjects: NEOPLASIAS; MUTAÇÃO; GENOMAS; BIOINFORMÁTICA; ENTROPIA; ALGORITMOS
- Keywords: Oncology; Driver discovery; Structure analysis; Mutations of clinical relevance
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
- Licença: other-oa
-
ABNT
BAILEY, Matthew H. et al. Comprehensive characterization of cancer driver genes and mutations. Cell, v. 173, n. 2, p. 371-385.e1-e9, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.cell.2018.02.060. Acesso em: 01 jan. 2026. -
APA
Bailey, M. H., Noushmehr, H., Carlotti Júnior, C. G., Santos, J. S. dos, Kemp, R., Sankarankutty, A. K., & Tirapelli, D. P. da C. (2018). Comprehensive characterization of cancer driver genes and mutations. Cell, 173( 2), 371-385.e1-e9. doi:10.1016/j.cell.2018.02.060 -
NLM
Bailey MH, Noushmehr H, Carlotti Júnior CG, Santos JS dos, Kemp R, Sankarankutty AK, Tirapelli DP da C. Comprehensive characterization of cancer driver genes and mutations [Internet]. Cell. 2018 ; 173( 2): 371-385.e1-e9.[citado 2026 jan. 01 ] Available from: https://doi.org/10.1016/j.cell.2018.02.060 -
Vancouver
Bailey MH, Noushmehr H, Carlotti Júnior CG, Santos JS dos, Kemp R, Sankarankutty AK, Tirapelli DP da C. Comprehensive characterization of cancer driver genes and mutations [Internet]. Cell. 2018 ; 173( 2): 371-385.e1-e9.[citado 2026 jan. 01 ] Available from: https://doi.org/10.1016/j.cell.2018.02.060 - Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers
- Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images
- Machine learning detects pan-cancer ras pathway activation in the cancer genome atlas
- An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics
- Pathogenic germline variants in 10,389 adult cancers
- Comprehensive analysis of alternative splicing across tumors from 8,705 patients
- Scalable open science approach for mutation calling of tumor exomes using multiple genomic pipelines
- Oncogenic signaling pathways in the cancer genome atlas
- Comprehensive molecular characterization of the hippo signaling pathway in cancer
- Somatic mutational landscape of splicing factor genes and their functional consequences across 33 cancer types
Informações sobre o DOI: 10.1016/j.cell.2018.02.060 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 002937508.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas