Unsupervised domain adaptation for human activity recognition (2018)
- Authors:
- Autor USP: CARVALHO, ANDRÉ CARLOS PONCE DE LEON FERREIRA DE - ICMC
- Unidade: ICMC
- DOI: 10.1007/978-3-030-03493-1_65
- Subjects: APRENDIZADO COMPUTACIONAL; RECONHECIMENTO DE PADRÕES
- Keywords: Human activity recognition; Transfer learning; Unsupervised domain adaptation
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Lecture Notes in Computer Science
- ISSN: 0302-9743
- Volume/Número/Paginação/Ano: v. 11314, p. 623-630, 2018
- Conference titles: International Conference on Intelligent Data Engineering and Automated Learning - IDEAL
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BARBOSA, Paulo et al. Unsupervised domain adaptation for human activity recognition. Lecture Notes in Computer Science. Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-030-03493-1_65. Acesso em: 12 fev. 2026. , 2018 -
APA
Barbosa, P., Garcia, K. D., Moreira, J. M., & Carvalho, A. C. P. de L. F. de. (2018). Unsupervised domain adaptation for human activity recognition. Lecture Notes in Computer Science. Cham: Springer. doi:10.1007/978-3-030-03493-1_65 -
NLM
Barbosa P, Garcia KD, Moreira JM, Carvalho ACP de LF de. Unsupervised domain adaptation for human activity recognition [Internet]. Lecture Notes in Computer Science. 2018 ; 11314 623-630.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1007/978-3-030-03493-1_65 -
Vancouver
Barbosa P, Garcia KD, Moreira JM, Carvalho ACP de LF de. Unsupervised domain adaptation for human activity recognition [Internet]. Lecture Notes in Computer Science. 2018 ; 11314 623-630.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1007/978-3-030-03493-1_65 - Gabinete pequeno é destaque de pc itautec
- New data strucutre and spanning forest operators for evolutionay algorithms
- Metalearning for context-aware filtering: selection of tensor factorization algorithms
- Evolutionary tuning of SVM parameter values in multiclass problems
- Dimensionality reduction for the algorithm recommendation problem
- Making data stream classification tree-based ensembles lighter
- A study of biclustering coherence measures for gene expression data
- Anomaly detection through temporal abstractions on intensive care data: position paper
- CF4CF: recommending collaborative filtering algorithms using collaborative filtering
- A machine learning-based approach for prediction of plant protection product deposition
Informações sobre o DOI: 10.1007/978-3-030-03493-1_65 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
