Exportar registro bibliográfico


Metrics:

Comparison between elastic properties of theoretical, computational method and experimental results for filament wound composite pipes (2017)

  • Authors:
  • Autor USP: CARVALHO, JONAS DE - EESC
  • Unidade: EESC
  • DOI: 10.1007/s40430-016-0584-9
  • Subjects: MATERIAIS COMPÓSITOS DE FIBRAS; MÉTODO DOS ELEMENTOS FINITOS; TUBOS; ENGENHARIA MECÂNICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s40430-016-0584-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: bronze

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      ORTENZI, A.; CARVALHO, Jonas de; CORVI, Andrea. Comparison between elastic properties of theoretical, computational method and experimental results for filament wound composite pipes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, Heidelberg, Germany, Springer, v. 39, n. 4, p. 1375-1390, 2017. Disponível em: < http://dx.doi.org/10.1007/s40430-016-0584-9 > DOI: 10.1007/s40430-016-0584-9.
    • APA

      Ortenzi, A., Carvalho, J. de, & Corvi, A. (2017). Comparison between elastic properties of theoretical, computational method and experimental results for filament wound composite pipes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39( 4), 1375-1390. doi:10.1007/s40430-016-0584-9
    • NLM

      Ortenzi A, Carvalho J de, Corvi A. Comparison between elastic properties of theoretical, computational method and experimental results for filament wound composite pipes [Internet]. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2017 ; 39( 4): 1375-1390.Available from: http://dx.doi.org/10.1007/s40430-016-0584-9
    • Vancouver

      Ortenzi A, Carvalho J de, Corvi A. Comparison between elastic properties of theoretical, computational method and experimental results for filament wound composite pipes [Internet]. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2017 ; 39( 4): 1375-1390.Available from: http://dx.doi.org/10.1007/s40430-016-0584-9

    Referências citadas na obra
    Ortenzi A, De Carvalho J, Corvi A (2012) Comparison behavior for GFRP filament wound pipes with two different sectional areas regarding high temperature. In: OMAE conference on ocean, offshore, and artic engineering (ed ASME), Rio de Janeiro, Brazil, paper no. OMAE2012-84256. ASME, New York, pp 955–961
    Ortenzi A, Corvi A, Virga A (2014) Preliminary study on the acoustic emission wave velocity on filament wound glass fiber reinforced polymer pipes and its correspondence with the winding angle. Adv Mater Res 891–892:1243–1248
    Chun-Gon K et al (2002) Optimal design of filament wound structures under internal pressure based on the semi-geodesic path algorithm. Compos Struc 67:443–452
    Vaughan DJ (1998) Laminate design. In: Peters ST (ed) Handbook of composites, 2nd edn. Chapman & Hall, Mountain View, pp 686–708
    Quinn JA (2002) Composites design manual. 3rd (ed), Ch. 1-4. James Quinn Associates Ltd, Liverpool
    Piggott M (2002) Load bearing fibre composites. 2nd (ed). Kluwer Academic Publishers, Toronto, pp 20–50, 95–123
    Daniel IM, Ishai O (1994) Engineering mechanics of composite materials. Oxford University Press, New York, pp 89–112
    Hyer MW (1998) Stress analysis of fiber-reinforced composite materials. WCB McGraw-Hill, Virginia, pp 98–138
    Vasiliev VV, Morozov EV (2001) Mechanics and analysis of composite materials. ELSEVIER, Natal, pp 41–62, 102–134
    Hoa SV, YU CW, Sankar TS (1985) Analysis of Filament Wound Vessel Using Finite Elements. J Compos Struc 3:1–18
    Hinton MJ, Soden PD (1998) Failure of ±55° filament wound glass/epoxy composite tubes under biaxial compression. J Compos Mater 32:1618–1647
    Kaddour AS, Hinton MJ, Soden PD (2002) A comparison of the predictive capabilities of current theories of composite laminates judged against experimental evidence. Compos Sci Technol 62:1725–1797
    Rotem A (1998) Prediction of laminate failure with the Rotem failure criterion. Compos Sci Technol 58(7):1083–1094
    Tsai SW, Hoa SV and Gay D (2002) Composite materials—design and applications. CRC Press, New York, pp 23–52, 210–258
    Zinoviev PA et al (1997) The strength of multilayered composites under a plane stress state. J Compos Sci Technol 58:1209–1223
    Hart-Smith LJ (2002) Comparison between theories and test data concerning the strength of various fiber–polymer composites. J Compos Sci Technol 62:1591–1618
    Puck A, Schürman H (1996) Failure analysis of frp laminates by means of physically based phenomenological models. J Compos Sci Technol 58:1045–1067
    Tsai SW, Wu EM (1971) A general theory of strength for anisotropic materials. J Compos Mater 5:58–80
    Hashin Z (1983) Analysis of composites materials. J Appl Mech 50:481–485
    Rousseau J, Perreux D, Verdière N (1999) The influence of winding patterns on the damage behavior of filament-wound pipes. Compos Sci Technol 59:1439–1449
    Meijer G, Ellyin F (2008) A failure envelope for ±60° filament wound glass fiber reinforced epoxy tubular. Compos A 65:555–564
    Ellyin F (1874) Maser R (2004) Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens. Compos Sci Technol 64:1863
    Kaddour AS, Soden PD, Hinton MJ (2003) Behaviour of ±45° glass/epoxy filament wound composite tubes under quasi-static Composite Tubes under biaxial tension–compression loading: experimental results. Compos B 34:689–704
    Ortenzi A, Tarpani JR, De Carvalho J (2010) Compared behavior of filament wound pipes tested at room temperature and high temperature. In: SEICO—SAMPE international conference (ed Erath MA), Paris, France, SEICO, Paris, pp 584–589
    Hu G et al (1998) Mechanical behavior of ∞55º filament-wound glass-fibre/epoxy-resin tubes—III. Macromechanical model of the macroscopic behavior of tubular structures with damage and failure envelope prediction. Compos Sci Technol 58:19–29
    Abel-H F (2005) Filament winding of revolution structures. J Reinf Plast Compos 24:855–868
    Polini W, Sorrentino L (2006) Winding trajectory and winding time in robotized filament winding of asymmetric shape parts. J Compos Mater 39:1391–1410
    Koussios S, Bergsma OK (2006) Friction experiments for filament winding applications. J Thermoplast Compos Mater 19:5–34
    Meink TE, Huybrechts S, Shen M-HH (2002) Processing induced warpage of filament winding composite cylindrical shells. J Compos Mater 36:1025–1047
    Binienda WK, Wang Y (1999) Stresses reduction in filament wound composite tubes. J Reinf Plast Compos 18:684–701
    Kabir MZ (2000) Finite element analysis of composite pressure vessels with a load sharing metallic liner. Compos Struct 49:247–255
    Arif AFM, Malik MH, Omari AS (2014) Impact resistance of filament wound pipes: a parametric study In: ASME 2014 Pressure vessels and piping conference. (ed ASME), Anahein, USA, ASME, New York, pp not available
    Zhou C, Xia Z, Yong Q (2006) Micro mechanical model of filament wound composite pipes with damage analysis. In: ASME 2006 pressure vessels and piping/ICPVT-11 conference. (ed ASME), Vancouver, Canada, ASME, New York, pp 67–74
    Chen MC, Clewlow LNO (1977) Computer analysis of filament reinforced metallic-spherical pressure vessels. Comput Struct 7:93–102
    Du J et al (2011) Design and fabrication of the world’s first filament wound section X class II vessels. In: ASME 2011 Pressure vessels and piping conference. (ed ASME), Baltimore, USA, ASME, New York, pp 59–68
    Schlottermüller M et al (2003) Thermal residual stress simulation in thermoplastic filament winding process. J Thermoplast Compos Mater 16:497–518
    ASTM D3171:2010 (2010) Standard test methods for constituent content of composite materials
    Durville D (2007) Finite element simulation of textile materials at mesoscopic scale. In: Finite element modelling of textiles and textile composites, https://hal-ecp.archives-ouvertes.fr/hal-00274046 . Accessed 18 Feb 2015
    SAP IP Inc (2012) ANSYS Workbench V.13.0, User’s guide. October 2012
    DS. Solidworks 2013 (2013) Academic version manual. September 2013
    Lukas D, Pan N (2003) Wetting of a fiber bundle in a fibrous structure. Polym Compos 24(3):314–322
    Lukas D et al (2006) Morphological transitions of capillary rise in a bundle of two and three solid parallel cylinders. Phys A 371:226–248
    Wang SK et al (2011) Comparison of wettability and capillary effect evaluated by different characterizing methods. In: 18th International conference on composite materials. Online access: http://www.iccm-central.org/Proceedings/ICCM18proceedings/data/2.%20Oral%20Presentation/Aug24%28Wednesday%29/W06%20Experimental%20Techniques/W6-3-IF0508.pdf
    Alfano G, Crisfield MA (1990) Finite element interface models for the delamination anaylsis of laminated composites: mechanical and computational issues. Int J Numer Methods Eng 50:1701–1736
    Benson DJ, Hallquist JO (1990) A single surface contact algorithm for the post-buckling analysis of shell structures. Comput Meth Appl Mech. Eng 78–2:141–163
    Mathworks- Matlab-Simulink (2011) Academic version 2012 User’s guide. September 2011
    Alberty J et al (2002) Matlab implementation of the finite element method in elasticity. Computing 69:239–263
    Voyadjis GZ, Kattan PI (2005) Mechanics of composite materials with MATLAB. Springer, Baton Rouge, pp 79–189
    Kirchhoff GR (1874) Vorlesungen über analytische Mechanik mit Einschluss der Hydrodynamik und der Theorie der Elastizität fester Körper. TEUBNER, Liepzig, p 1874
    Niklewicz J, Sims GD (2002) Size effects in composite materials. National physics Laboratory. NPL Report, MATC (A) 74, p 23
    MSC-Digimat (2013) Instruction book—The multi-scaling material modeling platform. November 2013
    ASTM: ASTM D2105—97 (Reapproved 2007). Standard test method for longitudinal tensile properties of “Fiberglass” (Glass-FiberReinforced Thermosetting-Resin) pipe and tube
    American Petroleum Institute. API 15HR (2001). Specification for fiberglass Line Pipe.—Appendix F. 3rd Ed

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020