Exportar registro bibliográfico


Metrics:

Effects of solar activity and galactic cosmic ray cycles on the modulation of the annual average temperature at two sites in southern Brazil (2018)

  • Authors:
  • USP affiliated authors: PACCA, IGOR IVORY GIL - IAG
  • Unidades: IAG
  • DOI: 10.5194/angeo-36-555-2018
  • Subjects: METEOROLOGIA DINÂMICA; ATIVIDADE SOLAR; CLIMATOLOGIA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.5194/angeo-36-555-2018 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      FRIGO, Everton; ANTONELLI, Francesco; SILVA, Djeniffer S. S. da; et al. Effects of solar activity and galactic cosmic ray cycles on the modulation of the annual average temperature at two sites in southern Brazil. Annales Geophysicae, Berlin, v. 36, p. 555-564, 2018. Disponível em: < https://doi.org/10.5194/angeo-36-555-2018 > DOI: 10.5194/angeo-36-555-2018.
    • APA

      Frigo, E., Antonelli, F., Silva, D. S. S. da, Lima, P. C. M., Pacca, I. I. G., & Bageston, J. V. (2018). Effects of solar activity and galactic cosmic ray cycles on the modulation of the annual average temperature at two sites in southern Brazil. Annales Geophysicae, 36, 555-564. doi:10.5194/angeo-36-555-2018
    • NLM

      Frigo E, Antonelli F, Silva DSS da, Lima PCM, Pacca IIG, Bageston JV. Effects of solar activity and galactic cosmic ray cycles on the modulation of the annual average temperature at two sites in southern Brazil [Internet]. Annales Geophysicae. 2018 ; 36 555-564.Available from: https://doi.org/10.5194/angeo-36-555-2018
    • Vancouver

      Frigo E, Antonelli F, Silva DSS da, Lima PCM, Pacca IIG, Bageston JV. Effects of solar activity and galactic cosmic ray cycles on the modulation of the annual average temperature at two sites in southern Brazil [Internet]. Annales Geophysicae. 2018 ; 36 555-564.Available from: https://doi.org/10.5194/angeo-36-555-2018

    Referências citadas na obra
    Campuzano, S. A., De Santis, A., Pavón-Carrasco, F. J., Osete, M. L., and Qamili, E.: Transfer Entropy between South Atlantic Anomaly and Global Sea Level for the last 300 years, Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2016-56, in review, 2016.
    Carslaw, K. S., Harrison, R. G., and Kirkby, J.: Cosmic rays, clouds, and climate, Science, 298, 1732–1736, 2002.
    Courtillot, V., Gallet, Y., Le Mouël, J.-L., Fluteau, F., and Genevey, A.: Are there connections between the Earth's magnetic field and climate?, Earth Planet. Sc. Lett., 253, 328–339, 2007.
    Dickinson, R. E.: Solar variability and the lower atmosphere, B. Am. Meteorol. Soc., 56, 1240–1248, 1975.
    Erlykin, A. D. and Wolfendale, A. W.: Cosmic ray effects on cloud cover and their relevance to climate change, J. Atmos. Sol.-Terr. Phy., 73, 1681–1686, 2011.
    Frigo, E., Pacca, I. G., Pereira-Filho, A. J., Rampelloto, P. H., and Rigozo, N. R.: Evidence for cosmic ray modulation in temperature records from the South Atlantic Magnetic Anomaly region, Ann. Geophys., 31, 1833–1841, https://doi.org/10.5194/angeo-31-1833-2013, 2013.
    Grigorian, O. R., Romashova, V. V., and Petrov, A. N.: SAA drift: Experimental Results, Adv. Space Res., 41, 76–78, 2008.
    Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophysical time series, Nonlin. Processes Geophys., 11, 561–566, https://doi.org/10.5194/npg-11-561-2004, 2004.
    Hartmann, G. A. and Pacca, I. G.: Time evolution of the South Atlantic Magnetic Anomaly, Ann. Brazilian Acad, Sciences, 81, 243–255, 2009.
    Hoyt, D. V. and Schatten, K. H.: The role of the sun in climate change, Oxford University Press, New York, USA, 1997.
    INMET: Temperature data recorded in the stations of IRA and TOR, available at: http://www.inmet.gov.br/portal/index.php?r=bdmep/bdmep, last access: 27 March 2018.
    Kirkby, J.: Cosmic Rays and Climate, Surv. Geophys., 28, 333–375, 2007.
    Kitaba, I., Nakagawa, T., Hyodo, M., Katoh, S., Dettman, D. L., and Sato, H.: Geological support for the Umbrella Effect as a link between geomagnetic field and climate, Sci. Rep., 7, 40682, https://doi.org/10.1038/srep40682, 2017.
    Krahenbuhl, D. S.: Investigating a solar influence on cloud cover using the North American Regional Reanalysis data, J. Space Weather Spac., 5, 1–10, https://doi.org/10.1051/swsc/2015012, 2015.
    Kudela, K.: On energetic particles in space, Acta Phys. Slovaca, 59, 537–652, 2009.
    Martin, I. M., Rai, D. B., da Costa, J. M., Palmeira, R., and Trivedi, N. B.: Enhanced Electron Precipitation in Brazilian Magnetic Anomaly in Association with Sudden Commencement, Nature Physical Science, 240, 84–86, 1972.
    McCracken, K. G. and Beer, J.: The Annual Cosmic-Radiation Intensities 1391–2014; The Annual Heliospheric Magnetic Field Strengths 1391–1983, and Identification of Solar Cosmic-Ray Events in the Cosmogenic Record 1800–1983, Sol. Phys., 290, 3051–3069, 2015.
    Mironova, I. A., Aplin, K. L., Arnold, F., Bazilevskaya, G. A., Harrison, R. G., Krivolutsky, A. A., Nicoll, K. A., Rozanov, E., Turunen, E., and Usoskin, I. G.: Energetic Particle Influence on the Earth's Atmosphere, Space Sci. Rev., 194, 1–96, https://doi.org/10.1007/s11214-015-0185-4, 2015.
    Miyahara, H., Yokoyama, Y., and Masuda, K.: Possible link between multi-decadal climate cycles and periodic reversals of solar magnetic field polarity, Earth Planet. Sc. Lett., 272, 290–295, 2008.
    Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T., Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and Natural Radiative Forcing, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M. S., Allen, K., Boschung, J., Nauels, A., Xia, Y., Bex V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 659–740, ISBN: 978-1-107-66182-0, 2014.
    Pierce, J. R.: Cosmic rays, aerosols, clouds, and climate: Recent findings from the CLOUD experiment, J. Geophys. Res.-Atmos., 122, 8051–8055, https://doi.org/10.1002/2017JD027475, 2017.
    Rigozo, N. R., Nordemann, D. J. R., Echer, E., Vieira, L. E. A., and Faria, H. H.: Comparative study between four classical spectral analysis methods, Appl. Math. Comput., 168, 411–430, 2005.
    Shaviv, N. J.: On climate response to changes in the cosmic ray flux and radiative budget, Geophys. Res., 110, A08105, https://doi.org/10.1029/2004JA010866, 2005.
    Solanki, S. K., Krivova, N. A., and Haigh, J. D.: Solar Irradiance Variability and Climate, Annu. Rev. Astron. Astr., 51, 311–351, https://doi.org/10.1146/annurev-astro-082812-141007, 2013.
    Souza Echer, M. P., Echer, E., Nordemann, D. J. R., Rigozo, N. R., and Prestes, A.: Wavelet analysis of a centennial (1895- 1994) southern Brazil rainfall series (Pelotas, 31∘46′19′′&thinsp;S 52∘20′33′′&thinsp;W), Clim. Change, 87, 489–497, 2008.
    Svensmark, H.: Cosmoclimatology: a new theory emerges, News Rev. Astron. Geophys., 48, 1.18–1.24, 2007.
    Svensmark, H.: Evidence of nearby supernovae affecting life on Earth, Mon. Not. R. Astron. Soc., 423, 1234–1253, 2012.
    Svensmark, H. and Friis-Christensen, E.: Variation of Cosmic Ray Flux and Global Cloud Coverage – a Missing Link in Solar Climate Relationships, J. Atmos. Sol.-Terr. Phy., 59, 1225–1232, 1997.
    Trivedi, N. B., Abdu, M. A., Pathan, B. M., Dutra, S. L. G., Schuch, N. J., Santos, J. C., and Barreto, L. M.: Amplitude enhancement of SC(H) events in the South Atlantic anomaly region, J. Atmos. Sol.-Terr. Phy., 67, 1751–1760, 2005.
    Usoskin, I., Mursula, K., Kananen, H., and Kovaltsov, G. A.: Dependence of cosmic rays on solar activity for odd and even solar cycles, Adv. Space Res., 27, 571–576, 2001.
    Usoskin, I. G., Bazilevskaya, G. A., and Kovaltsov, G. A.: Solar modulation parameter for cosmic rays since 1936 reconstructed from ground-based neutron monitors and ionization chambers, J. Geophys. Res., 116, A02104, https://doi.org/10.1029/2010JA016105, 2011.
    Vieira, L. E. A. and da Silva, L. A.: Geomagnetic modulation of clouds effects in the Southern Hemisphere Magnetic Anomaly through lower atmosphere cosmic ray effects, Geophys. Res. Lett., 33, L14802, https://doi.org/10.1029/2006GL026389, 2006.
    Wagner, G., Masarik, J., Beer, J., Baumgartner, S., Imboden, D., Kubik, P. W., Synal, H.-A., and Suter, M.: Reconstruction of the geomagnetic field between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core, Nucl. Instrum. Meth. B, 172, 597–604, 2000.
    Wagner, G., Livingstone, D. M., Masarik, J., Muscheler, R., and Beer, J.: Some results relevant to the discussion of a possible link between cosmic rays and the Earth's climate, J. Geophys. Res., 106, 3381–3387, 2001.
    Wilcox, J. M.: Solar activity and the weather, J. Atmos. Sol.-Terr. Phy., 37, 237–256, 1975.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020