Exportar registro bibliográfico


Metrics:

Characterization of strict positive definiteness on products of complex spheres (2019)

  • Authors:
  • USP affiliated authors: MASSA, EUGENIO TOMMASO - ICMC ; PERON, ANA PAULA - ICMC
  • Unidade: ICMC
  • DOI: 10.1007/s11117-018-00641-5
  • Subjects: ANÁLISE HARMÔNICA EM ESPAÇOS EUCLIDIANOS; SÉRIES DE FOURIER; SÉRIES ORTOGONAIS
  • Keywords: Strictly Positive Definite functions; Product of complex spheres; Generalized Zernike polynomial
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Positivity
    • ISSN: 1385-1292
    • Volume/Número/Paginação/Ano: v. 23, n. 4, p. 853-874, Sep. 2019
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s11117-018-00641-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CASTRO, Mario Henrique de; MASSA, Eugenio Tommaso; PERON, Ana Paula. Characterization of strict positive definiteness on products of complex spheres. Positivity, Dordrecht, v. 23, n. 4, p. Se 2019, 2019. Disponível em: < http://dx.doi.org/10.1007/s11117-018-00641-5 > DOI: 10.1007/s11117-018-00641-5.
    • APA

      Castro, M. H. de, Massa, E. T., & Peron, A. P. (2019). Characterization of strict positive definiteness on products of complex spheres. Positivity, 23( 4), Se 2019. doi:10.1007/s11117-018-00641-5
    • NLM

      Castro MH de, Massa ET, Peron AP. Characterization of strict positive definiteness on products of complex spheres [Internet]. Positivity. 2019 ; 23( 4): Se 2019.Available from: http://dx.doi.org/10.1007/s11117-018-00641-5
    • Vancouver

      Castro MH de, Massa ET, Peron AP. Characterization of strict positive definiteness on products of complex spheres [Internet]. Positivity. 2019 ; 23( 4): Se 2019.Available from: http://dx.doi.org/10.1007/s11117-018-00641-5

    Referências citadas na obra
    Barbosa, V.S., Menegatto, V.A.: Strictly positive definite kernels on compact two-point homogeneous spaces. Math. Inequal. Appl. 19(2), 743–756 (2016)
    Barbosa, V.S., Menegatto, V.A.: Strict positive definiteness on products of compact two-point homogeneous spaces. Integral Transforms Spec. Funct. 28(1), 56–73 (2017)
    Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions. Graduate Texts in Mathematics, vol. 100. Springer, New York (1984)
    Berg, C., Peron, A.P., Porcu, E.: Orthogonal expansions related to compact Gelfand pairs. Expos. Math. 36, 259–277 (2018)
    Berg, C., Peron, A.P.: Porcu, E: Schoenberg’s theorem for real and complex Hilbert spheres revisited. J. Approx. Theory 228, 58–78 (2018). arXiv:1701.07214
    Berg, C., Porcu, E.: From Schoenberg coefficients to Schoenberg functions. Constr. Approx. 45(2), 217–241 (2017)
    Bonfim, R.N., Menegatto, V.A.: Strict positive definiteness of multivariate covariance functions on compact two-point homogeneous spaces. J. Multivar. Anal. 152, 237–248 (2016)
    Chen, D., Menegatto, V.A., Sun, X.: A necessary and sufficient condition for strictly positive definite functions on spheres. Proc. Am. Math. Soc. 131(9), 2733–2740 (2003). (electronic)
    Cheney, E.W.: Approximation using positive definite functions. In: Approximation theory VIII, Vol. 1 (College Station, TX, 1995), vol. 6 of Ser. Approx. Decompos., World Sci. Publ., River Edge, NJ, pp. 145–168 (1995)
    Cheney, W., Light, W.: A course in approximation theory. Graduate Studies in Mathematics, vol. 101. American Mathematical Society, Providence, RI, 2009, reprint of the 2000 original
    Christensen, J.P.R., Ressel, P.: Positive definite kernels on the complex Hilbert sphere. Math. Z. 180(2), 193–201 (1982)
    Gneiting, T.: Strictly and non-strictly positive definite functions on spheres. Bernoulli 19(4), 1327–1349 (2013)
    Godement, R.: Introduction aux travaux de A. Selberg. In: Séminaire Bourbaki, vol. 4, Soc. Math. France, Paris, pp. Exp. No. 144, 95–110 (1995)
    Guella, J., Menegatto, V.A.: Strictly positive definite kernels on the torus. Constr. Approx. 46(2), 271–284 (2017)
    Guella, J.C., Menegatto, V.A.: Strictly positive definite kernels on a product of spheres. J. Math. Anal. Appl. 435(1), 286–301 (2016)
    Guella, J.C., Menegatto, V.A.: Schoenberg’s theorem for positive definite functions on products: a unifying framework. J. Fourier Anal. Appl. (2018). https://doi.org/10.1007/s00041-018-9631-5
    Guella, J.C., Menegatto, V.A.: Unitarily invariant strictly positive definite kernels on spheres. Positivity 22(1), 91–103 (2018)
    Guella, J.C., Menegatto, V.A., Peron, A.P.: An extension of a theorem of Schoenberg to products of spheres. Banach J. Math. Anal. 10(4), 671–685 (2016)
    Guella, J.C., Menegatto, V.A., Peron, A.P.: Strictly positive definite kernels on a product of spheres II. SIGMA Symmetry Integrability Geom. Methods Appl. 12 Paper No. 103, 15 (2016)
    Guella, J.C., Menegatto, V.A., Peron, A.P.: Strictly positive definite kernels on a product of circles. Positivity 21(1), 329–342 (2017)
    Hannan, E.J.: Multiple Time Series. Wiley, New York (1970)
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990). corrected reprint of the 1985 original
    Koornwinder, T.: Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula. J. Lond. Math. Soc. (2) 18(1), 101–114 (1978)
    Koornwinder, T.H.: The addition formula for Jacobi Polynomials II. The Laplace type integral representation and the product formula. Math. Centrum Amsterdam, report TW133 (1972)
    Laurent, M.: Équations exponentielles-polynômes et suites récurrentes linéaires. II. J. Number Theory 31(1), 24–53 (1989)
    Light, W.A., Cheney, E.W.: Interpolation by periodic radial basis functions. J. Math. Anal. Appl. 168(1), 111–130 (1992)
    Massa, E., Peron, A.P., Porcu, E.: Positive definite functions on complex spheres and their walks through dimensions. SIGMA Symm. Integrab. Geom. Methods Appl. 13, 088 (2017). arXiv:1704.01237
    Menegatto, V.A.: Strict positive definiteness on spheres. Analysis (Munich) 19(3), 217–233 (1999)
    Menegatto, V.A., Oliveira, C.P., Peron, A.P.: Strictly positive definite kernels on subsets of the complex plane. Comput. Math. Appl. 51(8), 1233–1250 (2006)
    Menegatto, V.A., Peron, A.P.: A complex approach to strict positive definiteness on spheres. Integral Transforms Spec. Funct. 11(4), 377–396 (2001)
    Menegatto, V.A., Peron, A.P.: Positive definite kernels on complex spheres. J. Math. Anal. Appl. 254(1), 219–232 (2001)
    Musin, O.R.: Multivariate positive definite functions on spheres. In: Discrete Geometry and Algebraic Combinatorics, vol. 625. Contemp. Math., Amer. Math. Soc., Providence, RI, pp. 177–190 (2014)
    Pinkus, A.: Strictly Hermitian positive definite functions. J. Anal. Math. 94, 293–318 (2004)
    Porcu, E., Bevilacqua, M., Genton, M.G.: Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere. J. Am. Stat. Assoc. 111(514), 888–898 (2016)
    Ramos-López, D., Sánchez-Granero, M.A., Fernández-Martínez, M., Martínez-Finkelshtein, A.: Optimal sampling patterns for Zernike polynomials. Appl. Math. Comput. 274, 247–257 (2016)
    Schoenberg, I.J.: Positive definite functions on spheres. Duke Math. J. 9, 96–108 (1942)
    Szegö, G.: Orthogonal polynomials. American Mathematical Society Colloquium Publications, vol. 23. Revised ed. American Mathematical Society, Providence, RI (1959)
    Torre, A.: Generalized Zernike or disc polynomials: an application in quantum optics. J. Comput. Appl. Math. 222(2), 622–644 (2008)
    Wünsche, A.: Generalized Zernike or disc polynomials. J. Comput. Appl. Math. 174(1), 135–163 (2005)
    Xu, Y., Cheney, E.W.: Strictly positive definite functions on spheres. Proc. Am. Math. Soc. 116(4), 977–981 (1992)
    Yaglom, A.M.: Correlation Theory of Stationary and Related Random Functions. Basic Results. Springer Series in Statistics, vol. I. Springer, New York (1987)

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021