Exportar registro bibliográfico


Metrics:

Surviving in hot and cold: psychrophiles and thermophiles from Deception Island volcano, Antarctica (2018)

  • Authors:
  • USP affiliated authors: PELLIZARI, VIVIAN HELENA - IO
  • Unidades: IO
  • DOI: 10.1007/s00792-018-1048-1
  • Subjects: METEOROLOGIA FÍSICA; ASTROBIOLOGIA; VULCANISMO
  • Language: Inglês
  • Imprenta:
    • Place of publication: Tokyo
    • Date published: 2018
  • Source:
    • Título do periódico: Extremophiles
    • Volume/Número/Paginação/Ano: v. 22, p. 917-929, 2018
  • Online source accessDOI
    Informações sobre o DOI: 10.1007/s00792-018-1048-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: hybrid
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BENDIA, Amanda G; ARAUJO, Gabriel G; PULSCHEN, André A; et al. Surviving in hot and cold: psychrophiles and thermophiles from Deception Island volcano, Antarctica. Extremophiles, Tokyo, v. 22, p. 917-929, 2018. Disponível em: < https://doi.org/10.1007/s00792-018-1048-1 > DOI: 10.1007/s00792-018-1048-1.
    • APA

      Bendia, A. G., Araujo, G. G., Pulschen, A. A., Contro, B., Duarte, R. T. D., Rodrigues, F., et al. (2018). Surviving in hot and cold: psychrophiles and thermophiles from Deception Island volcano, Antarctica. Extremophiles, 22, 917-929. doi:10.1007/s00792-018-1048-1
    • NLM

      Bendia AG, Araujo GG, Pulschen AA, Contro B, Duarte RTD, Rodrigues F, Pellizari VH, Galante D. Surviving in hot and cold: psychrophiles and thermophiles from Deception Island volcano, Antarctica [Internet]. Extremophiles. 2018 ; 22 917-929.Available from: https://doi.org/10.1007/s00792-018-1048-1
    • Vancouver

      Bendia AG, Araujo GG, Pulschen AA, Contro B, Duarte RTD, Rodrigues F, Pellizari VH, Galante D. Surviving in hot and cold: psychrophiles and thermophiles from Deception Island volcano, Antarctica [Internet]. Extremophiles. 2018 ; 22 917-929.Available from: https://doi.org/10.1007/s00792-018-1048-1

    Referências citadas na obra
    Amenábar MJ, Flores PA, Pugin B et al (2013) Archaeal diversity from hydrothermal systems of Deception Island, Antarctica. Polar Biol 36:373–380
    Bakermans C, Nealson KH (2004) Relationship of critical temperature to macromolecular synthesis and growth yield in Psychrobacter cryopegella. J Bacteriol. https://doi.org/10.1128/JB.186.8.2340-2345.2004
    Baraniecki CA, Aislabie J, Foght JM (2002) Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol. https://doi.org/10.1007/s00248-001-1019-3
    Bendia AG, Signori CN, Franco DC et al (2018) A mosaic of geothermal and marine features shapes microbial community structure on Deception Island volcano. Antarctica. Front Microbiol 9:899. https://doi.org/10.3389/fmicb.2018.00899
    Borrel G, Lehours AC, Crouzet O et al (2012) Stratification of Archaea in the deep sediments of a freshwater meromictic lake: vertical shift from methanogenic to uncultured Archaeal lineages. PLoS One. https://doi.org/10.1371/journal.pone.0043346
    Bowman JP, Nichols DS, McMeekin TA (1997) Psychrobacter glacincola sp. nov., a halotolerant, psychrophilic bacterium isolated from Antarctic Sea ice. Syst Appl Microbiol. https://doi.org/10.1016/s0723-2020(97)80067-7
    Bulat SA, Alekhina IA, Blot M et al (2004) DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: implications for searching for life in extreme icy environments. Int J Astrobiol. https://doi.org/10.1017/s1473550404001879
    Carrión O, Miñana-Galbis D, Montes MJ, Mercadé E (2011) Pseudomonas deceptionensis sp. nov., a psychrotolerant bacterium from the antarctic. Int J Syst Evol Microbiol 61:2401–2405
    Cavicchioli R (2016) On the concept of a psychrophile. ISME J 10:793–795
    Cockell CS, Catling DC, Davis WL et al (2000) The ultraviolet environment of Mars: biological implications past, present, and future. Icarus. https://doi.org/10.1006/icar.2000.6393
    Dsouza M, Taylor MW, Turner SJ, Aislabie J (2015) Genomic and phenotypic insights into the ecology of Arthrobacter from Antarctic soils. BMC Genom. https://doi.org/10.1186/s12864-015-1220-2
    Dulger S, Demirbag Z, Belduz AO (2004) Anoxybacillus ayderensis sp. nov. and Anoxybacillus kestanbolensis sp. nov. Int J Syst Evol Microbiol. https://doi.org/10.1099/ijs.0.02863-0
    Giovannoni S, Stingl U (2007) The importance of culturing bacterioplankton in the “omics” age. Nat Rev Microbiol 5:820–826
    Herbold CW, McDonald I, Cary C (2014) Microbial Ecology of Geothermal Habitats in Antarctica. In: Cowan D (ed) Antarctic Terrestrial Microbiology. Springer, Berlin Heidelberg, pp 181–215
    Hongoh Y, Ohkuma M, Kudo T (2003) Molecular analysis of bacterial microbiota in the gut of the termite Reticulitermes speratus (Isoptera; Rhinotermitidae). FEMS Microbiol Ecol. https://doi.org/10.1016/s0168-6496(03)00026-6
    Horneck G, Moeller R, Cadet J et al (2012) Resistance of bacterial endospores to outer space for planetary protection purposes—experiment PROTECT of the EXPOSE-E mission. Astrobiology. https://doi.org/10.1089/ast.2011.0737
    Hubert C, Loy A, Nickel M et al (2009) A constant flux of diverse thermophilic bacteria into the cold arctic seabed. Science. https://doi.org/10.1126/science.1174012
    Janning B, in’t Veld PH, Notermans S, Krämer J (1994) Resistance of bacterial strains to dry conditions: use of anhydrous silica gel in a desiccation model system. J Appl Bacteriol. https://doi.org/10.1111/j.1365-2672.1994.tb03080.x
    Kato S, Hara K, Kasai H et al (2009) Spatial distribution, diversity and composition of bacterial communities in sub-seafloor fluids at a deep-sea hydrothermal field of the Suiyo Seamount. Deep Sea Res Part I Oceanogr Res Pap. https://doi.org/10.1016/j.dsr.2009.05.004
    Kaur R, Rajesh C, Sharma R et al (2018) Metagenomic investigation of bacterial diversity of hot spring soil from Manikaran, Himachal Pradesh, India. Ecol Genet Genom. https://doi.org/10.1016/j.egg.2017.11.003
    Khodadad CL, Wong GM, James LM et al (2017) Stratosphere conditions inactivate bacterial endospores from a Mars spacecraft assembly facility. Astrobiology. https://doi.org/10.1089/ast.2016.1549
    Lane DJ (1991) 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. John Wiley & Sons, New York, pp 115–175
    Lauro FM, Allen MA, Wilkins D et al (2011) Psychrophiles: genetics, genomics, evolution. Extremophiles Handbook. Springer, Tokyo, pp 865–890
    Llarch À, Logan NA, Castellví J et al (1997) Isolation and characterization of thermophilic Bacillus spp. from geothermal environments on Deception Island, South Shetland Archipelago. Microb Ecol 34:58–65
    Ludwig W, Strunk O, Westram R et al (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371
    Manachini PL, Fortina MG, Parini C, Craveri R (1985) Bacillus thermoruber sp. nov., nom. rev., a red-pigmented thermophilic bacterium. Int J Syst Evol Microbiol 35:493–496
    Muñoz PA, Flores PA, Boehmwald FA, Blamey JM (2011) Thermophilic bacteria present in a sample from Fumarole Bay, Deception Island. Antarct Sci 23:549–555
    Musilova M, Wright G, Ward JM, Dartnell LR (2015) Isolation of radiation-resistant bacteria from Mars analog Antarctic Dry Valleys by preselection, and the correlation between radiation and desiccation resistance. Astrobiology. https://doi.org/10.1089/ast.2014.1278
    Muyzer G, Uitterlinden AG, Uitterlinden AG, De Waal EC (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700
    Nübel U, Engelen B, Felsre A et al (1996) Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol. https://doi.org/10.1128/jb.178.19.5636-5643.1996
    Palinska KA, Vogt JC, Surosz W (2018) Biodiversity analysis of the unique geothermal microbial ecosystem of the Blue Lagoon (Iceland) using next-generation sequencing (NGS). Hydrobiologia. https://doi.org/10.1007/s10750-017-3349-2
    Panitz C, Horneck G, Rabbow E et al (2015) The SPORES experiment of the EXPOSE-R mission: Bacillus subtilis spores in artificial meteorites. Int J Astrobiol. https://doi.org/10.1017/S1473550414000251
    Paulino-Lima IG, Azua-Bustos A, Vicuña R et al (2013) Isolation of UVC-Tolerant bacteria from the hyperarid Atacama Desert, Chile. Microb Ecol. https://doi.org/10.1007/s00248-012-0121-z
    Prabagaran SR, Manorama R, Delille D, Shivaji S (2007) Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiol Ecol 59:342–355
    Prakash O, Shouche Y, Jangid K, Kostka JE (2013) Microbial cultivation and the role of microbial resource centers in the omics era. Appl Microbiol Biotechnol 97(1):51–62
    Pulschen AA, Rodrigues F, Duarte RTD et al (2015) UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology. Microbiologyopen. https://doi.org/10.1002/mbo3.262
    Rahman TJ, Marchant R, Banat IM (2004) Distribution and molecular investigation of highly thermophilic bacteria associated with cool soil environments. Biochem Soc Trans. https://doi.org/10.1042/BST0320209
    Reddy GSN, Aggarwal RK, Matsumoto GI, Shivaji S (2000) Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol. https://doi.org/10.1099/00207713-50-4-1553
    Rey J, Somoza L, Martínez-Frías J (1995) Tectonic, volcanic, and hydrothermal event sequence on Deception Island (Antarctica). Geo-Marine Lett. https://doi.org/10.1007/BF01204491
    Schuerger AC, Mancinelli RL, Kern RG et al (2003) Survival of endospores of Bacillus subtilis on spacecraft surfaces under simulated martian environments: implications for the forward contamination of Mars. Icarus 165:253–276
    Sekine Y, Shibuya T, Postberg F et al (2015) High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat Commun 6:8604. https://doi.org/10.1038/ncomms9604
    Soo RM, Wood SA, Grzymski JJ et al (2009) Microbial biodiversity of thermophilic communities in hot mineral soils of Tramway Ridge, Mount Erebus, Antarctica. Environ Microbiol 11:715–728
    Stanley SO, Rose AH (1967) Bacteria and yeasts from lakes on Deception Island. Philos Trans R Soc London B Biol Sci 252:199–207
    Turkiewicz M, Gromek E, Kalinowska H, Zielińska M (1999) Biosynthesis and properties of an extracellular metalloprotease from the Antarctic marine bacterium Sphingomonas paucimobilis. Prog Ind Microbiol. https://doi.org/10.1016/S0079-6352(99)80097-6
    Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831
    Zeigler DR (2014) The Geobacillus paradox: why is a thermophilic bacterial genus so prevalent on a mesophilic planet? Microbiology (UK). https://doi.org/10.1099/mic.0.071696-0
    Zhou M, Dong B, Liu Q (2016) Draft Genome Sequence of Psychrobacter piscatorii Strain LQ58, a Psychrotolerant Bacterium Isolated from a Deep-Sea Hydrothermal Vent. Genome Announc. https://doi.org/10.1128/genomeA.00044-16

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020