Exportar registro bibliográfico


Alternatives to the Swan-Ganz catheter (2018)

  • Authors:
  • Unidade: FM
  • DOI: 10.1007/s00134-018-5187-8
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s00134-018-5187-8 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BACKER, Daniel De; HAJJAR, Ludhmila. Alternatives to the Swan-Ganz catheter. Intensive care medicine, New York, v. 44, n. 6, p. 730-741, 2018. Disponível em: < http://dx.doi.org/10.1007/s00134-018-5187-8 > DOI: 10.1007/s00134-018-5187-8.
    • APA

      Backer, D. D., & Hajjar, L. (2018). Alternatives to the Swan-Ganz catheter. Intensive care medicine, 44( 6), 730-741. doi:10.1007/s00134-018-5187-8
    • NLM

      Backer DD, Hajjar L. Alternatives to the Swan-Ganz catheter [Internet]. Intensive care medicine. 2018 ; 44( 6): 730-741.Available from: http://dx.doi.org/10.1007/s00134-018-5187-8
    • Vancouver

      Backer DD, Hajjar L. Alternatives to the Swan-Ganz catheter [Internet]. Intensive care medicine. 2018 ; 44( 6): 730-741.Available from: http://dx.doi.org/10.1007/s00134-018-5187-8

    Referências citadas na obra
    The Nobel Prize in Physiology or Medicine 1956. 2014. Nobelprize.org < http://www.nobelprize.org/nobel_prizes/medicine/laureates/1956/ >. Accessed 8-4-2018 (Online Source)
    Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D (1970) Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med 283:447–451
    Ganz W, Donoso R, Marcus HS, Forrester JS, Swan HJ (1971) A new technique for measurement of cardiac output by thermodilution in man. Am J Cardiol 27:392–396
    Shoemaker WC, Appel PL, Kram HB, Waxman K, Lee T-S (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94:1176–1186
    Connors AF, Speroff T, Dawson NV, Thomas C, Harrell FE, Wagner D et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. JAMA 276:889–897
    Richard C, Warszawski J, Anguel N, Deye N, Combes A, Barnoud D et al (2003) Early use of the pulmonary artery catheter and outcomes in patients with shock and acute respiratory distress syndrome: a randomized controlled trial. JAMA 290:2713–2720
    Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G et al (2005) Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA 294:1664–1670
    Sotomi Y, Sato N, Kajimoto K, Sakata Y, Mizuno M, Minami Y et al (2014) Impact of pulmonary artery catheter on outcome in patients with acute heart failure syndromes with hypotension or receiving inotropes: from the ATTEND Registry. Int J Cardiol 172:165–172
    Friese RS, Shafi S, Gentilello LM (2006) Pulmonary artery catheter use is associated with reduced mortality in severely injured patients: a national trauma data bank analysis of 53,312 patients. Crit Care Med 34:1597–1601
    Pinsky MR, Vincent JL (2005) Let us use the pulmonary artery catheter correctly and only when we need it. Crit Care Med 33:1119–1122
    Vincent JL, Rhodes A, Perel A, Martin GS, Della RG, Vallet B et al (2011) Clinical review: update on hemodynamic monitoring—a consensus of 16. Crit Care 15:229
    De Backer D, Fagnoul D, Herpain A (2013) The role of invasive techniques in cardiopulmonary evaluation. Curr Opin Crit Care 19:228–233
    Cecconi M, De Backer D, Antonelli M, Beale RJ, Bakker J, Hofer C et al (2014) Consensus on circulatory shock and hemodynamic monitoring. Task Force of the European Society of Intensive Care Medicine. Intensive Care Med 40:1795–1815
    Teboul JL, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X et al (2016) Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med 42:1350–1359
    Vincent JL, De Backer D (2013) Circulatory shock. N Engl J Med 369:1726–1734
    Ait-Oufella H, Bakker J (2016) Understanding clinical signs of poor tissue perfusion during septic shock. Intensive Care Med 42:2070–2072
    Joly HR, Weil MH (1969) Temperature of the great toe as an indication of the severity of shock. Circulation 39:131–138
    van Genderen ME, Engels N, van der Valk RJ, Lima A, Klijn E, Bakker J et al (2015) Early peripheral perfusion-guided fluid therapy in patients with septic shock. Am J Respir Crit Care Med 191:477–480
    Lima A, Jansen TC, van Bommel J, Ince C, Bakker J (2009) The prognostic value of the subjective assessment of peripheral perfusion in critically ill patients. Crit Care Med 37:934–938
    Lima A, van Bommel J, Sikorska K, van Genderen M, Klijn E, Lesaffre E et al (2011) The relation of near-infrared spectroscopy with changes in peripheral circulation in critically ill patients. Crit Care Med 39:1649–1654
    Oskay A, Eray O, Dinc SE, Aydin AG, Eken C (2015) Prognosis of critically ill patients in the ED and value of perfusion index measurement: a cross-sectional study. Am J Emerg Med 33:1042–1044
    He HW, Liu DW, Long Y, Wang XT (2013) The peripheral perfusion index and transcutaneous oxygen challenge test are predictive of mortality in septic patients after resuscitation. Crit Care 17:R116
    Ait-Oufella H, Lemoinne S, Boelle PY, Galbois A, Baudel JL, Lemant J et al (2011) Mottling score predicts survival in septic shock. Intensive Care Med 37:801–807
    Coudroy R, Jamet A, Frat JP, Veinstein A, Chatellier D, Goudet V et al (2015) Incidence and impact of skin mottling over the knee and its duration on outcome in critically ill patients. Intensive Care Med 41:452–459
    Ait-Oufella H, Joffre J, Boelle PY, Galbois A, Bourcier S, Baudel JL et al (2012) Knee area tissue oxygen saturation is predictive of 14-day mortality in septic shock. Intensive Care Med 38:976–983
    Ait-Oufella H, Bige N, Boelle PY, Pichereau C, Alves M, Bertinchamp R et al (2014) Capillary refill time exploration during septic shock. Intensive Care Med 40:958–964
    Brunauer A, Kokofer A, Bataar O, Gradwohl-Matis I, Dankl D, Bakker J et al (2016) Changes in peripheral perfusion relate to visceral organ perfusion in early septic shock: a pilot study. J Crit Care 35:105–109
    Boerma EC, Kuiper MA, Kingma WP, Egbers PH, Gerritsen RT, Ince C (2008) Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study. Intensive Care Med 34:1294–1298
    Lima A, van Genderen ME, van Bommel J, Klijn E, Jansem T, Bakker J (2014) Nitroglycerin reverts clinical manifestations of poor peripheral perfusion in patients with circulatory shock. Crit Care 18:R126
    De Backer D, Creteur J, Noordally O, Smail N, Gulbis B, Vincent JL (1998) Does hepato-splanchnic VO2/DO2 dependency exist in critically ill septic patients? Am J Respir Crit Care Med 157:1219–1225
    Reinhart K, Kuhn HJ, Hartog C, Bredle DL (2004) Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med 30:1572–1578
    Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304–377
    Levy B, Gibot S, Franck P, Cravoisy A, Bollaert PE (2005) Relation between muscle Na + K + ATPase activity and raised lactate concentrations in septic shock: a prospective study. Lancet 365:871–875
    Ospina-Tascon GA, Umana M, Bermudez WF, Bautista-Rincon DF, Valencia JD, Madrinan HJ et al (2016) Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med 42:211–221
    Perner A, Gordon AC, De Backer D, Dimopoulos G, Russell JA, Lipman J et al (2016) Sepsis: frontiers in diagnosis, resuscitation and antibiotic therapy. Intensive Care Med 42:1958–1969
    Pinsky M, Vincent JL, De Smet JM (1991) Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis 143:25–31
    De Backer D, Vincent JL (2018) Should we measure the central venous pressure to guide fluid management? Ten answers to 10 questions. Crit Care 22:43
    Hadian M, Kim HK, Severyn DA, Pinsky MR (2010) Cross-comparison of cardiac output trending accuracy of LiDCO, PiCCO, FloTrac and pulmonary artery catheters. Crit Care 14:R212
    Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul JL (2008) Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med 36:434–440
    Joosten A, Desebbe O, Suehiro K, Murphy LS, Essiet M, Alexander B et al (2017) Accuracy and precision of non-invasive cardiac output monitoring devices in perioperative medicine: a systematic review and meta-analysisdagger. Br J Anaesth 118:298–310
    Peyton PJ, Chong SW (2010) Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology 113:1220–1235
    Sakka SG, Kozieras J, Thuemer O, van Hout N (2007) Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. Br J Anaesth 99:337–342
    Scolletta S, Franchi F, Romagnoli S, Carla R, Donati A, Fabbri LP et al (2016) Comparison between Doppler-Echocardiography and uncalibrated pulse contour method for cardiac output measurement: a multicenter observational study. Crit Care Med 44:1370–1379
    De Backer D, Marx G, Tan A, Junker C, Van NM, Huter L et al (2011) Arterial pressure-based cardiac output monitoring: a multicenter validation of the third-generation software in septic patients. Intensive Care Med 37:233–240
    Meng L, Phuong TN, Alexander BS, Laning K, Chen G, Kain ZN et al (2011) The impact of phenylephrine, ephedrine, and increased preload on third-generation Vigileo-FLOTRAC and esophageal Doppler cardiac output measurements. Anesth Analg 113:751–757
    Monnet X, Teboul JL (2017) Transpulmonary thermodilution: advantages and limits. Crit Care 21:147
    Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL (2007) Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med 33:448–453
    Vignon P, Begot E, Mari A, Silva S, Chimot L, Delour P et al (2018) Hemodynamic assessment of patients with septic shock using transpulmonary thermodilution and critical care echocardiography: a comparative study. Chest 153:55–64
    Perel A, Saugel B, Teboul JL, Malbrain ML, Belda FJ, Fernandez-Mondejar E et al (2016) The effects of advanced monitoring on hemodynamic management in critically ill patients: a pre and post questionnaire study. J Clin Monit Comput 30:511–518
    Ritter S, Rudiger A, Maggiorini M (2009) Transpulmonary thermodilution-derived cardiac function index identifies cardiac dysfunction in acute heart failure and septic patients: an observational study. Crit Care 13:R133
    Hilty MP, Franzen DP, Wyss C, Biaggi P, Maggiorini M (2017) Validation of transpulmonary thermodilution variables in hemodynamically stable patients with heart diseases. Ann Intensive Care 7:86
    Belda FJ, Aguilar G, Teboul JL, Pestana D, Redondo FJ, Malbrain M et al (2011) Complications related to less-invasive haemodynamic monitoring. Br J Anaesth 106:482–486
    Uchino S, Bellomo R, Morimatsu H, Sugihara M, French C, Stephens D et al (2006) Pulmonary artery catheter versus pulse contour analysis: a prospective epidemiological study. Crit Care 10:R174
    Trof RJ, Beishuizen A, Cornet AD, de Wit RJ, Girbes AR, Groeneveld AB (2012) Volume-limited versus pressure-limited hemodynamic management in septic and nonseptic shock. Crit Care Med 40:1177–1185
    Papolos A, Narula J, Bavishi C, Chaudhry FA, Sengupta PP (2016) U.S. Hospital use of echocardiography: insights from the Nationwide Inpatient Sample. J Am Coll Cardiol 67:502–511
    Wetterslev M, Moller-Sorensen H, Johansen RR, Perner A (2016) Systematic review of cardiac output measurements by echocardiography vs. thermodilution: the techniques are not interchangeable. Intensive Care Med 42:1223–1233
    Mercado P, Maizel J, Beyls C, Titeca-Beauport D, Joris M, Kontar L et al (2017) Transthoracic echocardiography: an accurate and precise method for estimating cardiac output in the critically ill patient. Crit Care 21:136
    Huttemann E, Schelenz C, Kara F, Chatzinikolaou K, Reinhart K (2004) The use and safety of transoesophageal echocardiography in the general ICU—a minireview. Acta Anaesthesiol Scand 48:827–836
    Mayo PH, Beaulieu Y, Doelken P, Feller-Kopman D, Harrod C, Kaplan A et al (2009) American College of Chest Physicians/La Societe de Reanimation de Langue Francaise statement on competence in critical care ultrasonography. Chest 135:1050–1060
    Vieillard-Baron A, Chergui K, Augarde R, Prin S, Page B, Beauchet A et al (2003) Cyclic changes in arterial pulse during respiratory support revisited by Doppler echocardiography. Am J Respir Crit Care Med 168:671–676
    Vieillard-Baron A, Matthay M, Teboul JL, Bein T, Schultz M, Magder S et al (2016) Experts’ opinion on management of hemodynamics in ARDS patients: focus on the effects of mechanical ventilation. Intensive Care Med 42:739–749
    Vignon P, Repesse X, Begot E, Leger J, Jacob C, Bouferrache K et al (2016) Comparison of echocardiographic indices used to predict fluid responsiveness in ventilated patients. Am J Respir Crit Care Med 195:1022–1032
    Papanikolaou J, Makris D, Saranteas T, Karakitsos D, Zintzaras E, Karabinis A et al (2011) New insights into weaning from mechanical ventilation: left ventricular diastolic dysfunction is a key player. Intensive Care Med 37:1976–1985
    Sanfilippo F, Corredor C, Arcadipane A, Landesberg G, Vieillard-Baron A, Cecconi M et al (2017) Tissue Doppler assessment of diastolic function and relationship with mortality in critically ill septic patients: a systematic review and meta-analysis. Br J Anaesth 119:583–594
    Vieillard-Baron A, Slama M, Mayo P, Charron C, Amiel JB, Esterez C et al (2013) A pilot study on safety and clinical utility of a single-use 72-hour indwelling transesophageal echocardiography probe. Intensive Care Med 39:629–635
    Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW et al (2012) International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 38:577–591
    Mayo P, Volpicelli G, Lerolle N, Schreiber A, Doelken P, Vieillard-Baron A (2016) Ultrasonography evaluation during the weaning process: the heart, the diaphragm, the pleura and the lung. Intensive Care Med 42:1107–1117
    De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104
    den Uil CA, Lagrand WK, van der Martin E, Jewbali LS, Cheng JM, Spronk PE et al (2010) Impaired microcirculation predicts poor outcome of patients with acute myocardial infarction complicated by cardiogenic shock. Eur Heart J 31:3032–3039
    Edul VS, Enrico C, Laviolle B, Vazquez AR, Ince C, Dubin A (2012) Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med 40:1443–1448
    De Backer D, Donadello K, Sakr Y, Ospina-Tascon GA, Salgado DR, Scolletta S et al (2013) Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med 41:791–799
    Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL (2004) Persistant microvasculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831
    De Backer D, Donadello K, Taccone FS, Ospina-Tascon G, Salgado D, Vincent JL (2011) Microcirculatory alterations: potential mechanisms and implications for therapy. Ann Intensive Care 1:27
    Cohen ES, Law WR, Easington CR, Cruz KQ, Nardulli BA, Balk RA et al (2002) Adenosine deaminase inhibition attenuates microvascular dysfunction and improves survival in sepsis. Am J Respir Crit Care Med JID - 9421642 166:16–20
    Tachon G, Harrois A, Tanaka S, Kato H, Huet O, Pottecher J et al (2014) Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med 42:1433–1441
    De Backer D, Hollenberg S, Boerma C, Goedhart P, Buchele G, Ospina-Tascon G et al (2007) How to evaluate the microcirculation: report of a round table conference. Crit Care 11:R101
    Ince C, Boerma EC, Cecconi M, De Backer D, Shapiro NI, Duranteau J et al (2018) Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med 44:281–299
    Ospina-Tascon G, Neves AP, Occhipinti G, Donadello K, Buchele G, Simion D et al (2010) Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36:949–955
    Pottecher J, Deruddre S, Teboul JL, Georger J, Laplace C, Benhamou D et al (2010) Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med 36:1867–1874
    De Backer D, Creteur J, Dubois MJ, Sakr Y, Koch M, Verdant C et al (2006) The effects of dobutamine on microcirculatory alterations in patients with septic shock are independent of its systemic effects. Crit Care Med 34:403–408
    Rady MY, Nightingale P, Little RA, Edwards JD (1992) Shock index: a re-evaluation in acute circulatory failure. Resuscitation 23:227–234
    Andrews B, Muchemwa L, Kelly P, Lakhi S, Heimburger DC, Bernard GR (2014) Simplified severe sepsis protocol: a randomized controlled trial of modified early goal-directed therapy in Zambia. Crit Care Med 42:2315–2324
    Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138
    De Backer D, Heenen S, Piagnerelli M (2005) koch M, Vincent JL: pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–523
    Myatra SN, Prabu NR, Divatia JV, Monnet X, Kulkarni AP, Teboul JL (2017) The changes in pulse pressure variation or stroke volume variation after a “tidal volume challenge” reliably predict fluid responsiveness during low tidal volume ventilation. Crit Care Med 45:415–421
    Chu H, Wang Y, Sun Y, Wang G (2016) Accuracy of pleth variability index to predict fluid responsiveness in mechanically ventilated patients: a systematic review and meta-analysis. J Clin Monit Comput 30:265–274
    Monnet X, Guerin L, Jozwiak M, Bataille A, Julien F, Richard C et al (2012) Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Br J Anaesth 110:207–213
    Mahjoub Y, Pila C, Friggeri A, Zogheib E, Lobjoie E, Tinturier F et al (2009) Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by Doppler echocardiographic evaluation of the right ventricle. Crit Care Med 37:2570–2575
    Monnet X, Bataille A, Magalhaes E, Barrois J, Le Corre M, Gosset C et al (2012) End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Med 39:93–100

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021