Exploring the data using Extended Association Rule Network (2018)
- Authors:
- USP affiliated author: REZENDE, SOLANGE OLIVEIRA - ICMC
- School: ICMC
- DOI: 10.1109/BRACIS.2018.00064
- Subjects: MINERAÇÃO DE DADOS; REDES DE INFORMAÇÃO
- Keywords: Association Rules; Association Rules Network; Hypothesis building; Data Analysis and Market Basket Analysis
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Place of publication: Piscataway
- Date published: 2018
- Source:
- Título do periódico: Proceedings
- Conference title: Brazilian Conference on Intelligent Systems - BRACIS
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
PADUA, Renan de et al. Exploring the data using Extended Association Rule Network. 2018, Anais.. Piscataway: IEEE, 2018. Disponível em: http://dx.doi.org/10.1109/BRACIS.2018.00064. Acesso em: 04 jul. 2022. -
APA
Padua, R. de, Calcada, D. B., Carvalho, V. O. de, & Rezende, S. O. (2018). Exploring the data using Extended Association Rule Network. In Proceedings. Piscataway: IEEE. doi:10.1109/BRACIS.2018.00064 -
NLM
Padua R de, Calcada DB, Carvalho VO de, Rezende SO. Exploring the data using Extended Association Rule Network [Internet]. Proceedings. 2018 ;[citado 2022 jul. 04 ] Available from: http://dx.doi.org/10.1109/BRACIS.2018.00064 -
Vancouver
Padua R de, Calcada DB, Carvalho VO de, Rezende SO. Exploring the data using Extended Association Rule Network [Internet]. Proceedings. 2018 ;[citado 2022 jul. 04 ] Available from: http://dx.doi.org/10.1109/BRACIS.2018.00064 - A methodology for identifying interesting association rules by combining objective and subjective measures
- Transforming geo-referenced data in contextual information for context-aware recommender systems
- Solving the problem of selecting suitable objective measures by clustering association rules through the measures themselves
- Using topic hierarchies with privileged information to improve context-aware recommender systems
- Named entities as privileged information for hierarchical text clustering
- Fuzzy cluster descriptor extraction for flexible organization of documents
- Selecting Candidate Labels For Hierarchical Document Clusters Using Association Rules
- Latent association rule cluster based model to extract topics for classification and recommendation applications
- Cross-domain aspect extraction for sentiment analysis: a transductive learning approach
- Implementação de taxomanias para regras de associação em um ambiente de pós-processamento. (CDROM)
Informações sobre o DOI: 10.1109/BRACIS.2018.00064 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas