Exportar registro bibliográfico


Metrics:

Metabolomic and lipidomic profile in men with obstructive sleep apnoea: implications for diagnosis and biomarkers of cardiovascular risk (2018)

  • Authors:
  • USP affiliated authors: DRAGER, LUCIANO FERREIRA - FM
  • Unidades: FM
  • DOI: 10.1038/s41598-018-29727-6
  • Subjects: ARTERIOSCLEROSE; HIPERTENSÃO; BIOMARCADORES; DOENÇAS CARDIOVASCULARES
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.1038/s41598-018-29727-6 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      LEBKUCHEN, Adriana; DRAGER, Luciano Ferreira. Metabolomic and lipidomic profile in men with obstructive sleep apnoea: implications for diagnosis and biomarkers of cardiovascular risk. Scientific reports, London, v. 8, 2018. Disponível em: < http://dx.doi.org/10.1038/s41598-018-29727-6 > DOI: 10.1038/s41598-018-29727-6.
    • APA

      Lebkuchen, A., & Drager, L. F. (2018). Metabolomic and lipidomic profile in men with obstructive sleep apnoea: implications for diagnosis and biomarkers of cardiovascular risk. Scientific reports, 8. doi:10.1038/s41598-018-29727-6
    • NLM

      Lebkuchen A, Drager LF. Metabolomic and lipidomic profile in men with obstructive sleep apnoea: implications for diagnosis and biomarkers of cardiovascular risk [Internet]. Scientific reports. 2018 ; 8Available from: http://dx.doi.org/10.1038/s41598-018-29727-6
    • Vancouver

      Lebkuchen A, Drager LF. Metabolomic and lipidomic profile in men with obstructive sleep apnoea: implications for diagnosis and biomarkers of cardiovascular risk [Internet]. Scientific reports. 2018 ; 8Available from: http://dx.doi.org/10.1038/s41598-018-29727-6

    Referências citadas na obra
    Dempsey, J. A., Veasey, S. C., Morgan, B. J. & O’Donnell, C. P. Pathophysiology of sleep apnea. Physiol. Rev. 90, 47–112 (2010).
    Bradley, T. D. & Floras, J. S. Sleep apnea and heart failure: Part I: obstructive sleep apnea. Circulation 107, 1671–1678 (2003).
    Bradley, T. D. & Floras, J. S. Obstructive sleep apnoea and its cardiovascular consequences. Lancet 373, 82–93 (2009).
    Somers, V. K. et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology foundation scientific statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation 118, 1080–1111 (2008).
    Sjöström, C. et al. Prevalence of sleep apnoea and snoring in hypertensive men: a population based study. Thorax 57, 602–607 (2002).
    Drager, L. F. et al. Characteristics and predictors of obstructive sleep apnea in patients with systemic hypertension. Am. J. Cardiol. 105, 1135–1139 (2010).
    Drager, L. F., Ladeira, R. T., Brandão-Neto, R. A., Lorenzi-Filho, G. & Benseñor, I. M. Síndrome da apnéia obstrutiva do sono e sua relação com a hipertensão arterial sistêmica. Evidências atuais. Arq. Bras. Cardiol. 78, 531–536 (2002).
    Gami, A. S. et al. Association of atrial fibrillation and obstructive sleep apnea. Circulation 110, 364–367 (2004).
    Sin, D. D. et al. Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure. Am. J. Respir. Crit. Care Med. 160, 1101–1106 (1998).
    Costa, L. E. et al. Potential underdiagnosis of obstructive sleep apnoea in the cardiology outpatient setting. Heart 101, 1288–1292 (2015).
    Drager, L. F., Togeiro, S. M., Polotsky, V. Y. & Lorenzi-Filho, G. Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J. Am. Coll. Cardiol. 62, 569–576 (2013).
    Drager, L. F. et al. Translational approaches to understanding metabolic dysfunction and cardiovascular consequences of obstructive sleep apnea. Am. J. Physiol. Heart Circ. Physiol. 309, H1101–1111 (2015).
    McEvoy, R. D. et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N. Engl. J. Med. 375, 919–931 (2016).
    Dunn, W. B., Wilson, I. D., Nicholls, A. W. & Broadhurst, D. The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis 4, 2249–2264 (2012).
    Dunn, W. B. et al. Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry. Nat. Protoc. 6, 1060–83 (2011).
    Zhang, A. H. et al. Ultraperformance liquid chromatography-mass spectrometry based comprehensive metabolomics combined with pattern recognition and network analysis methods for characterization of metabolites and metabolic pathways from biological data sets. Anal. Chem. 85, 7606–7612 (2013).
    Orešič, M., Vidal-Puig, A. & Hänninen, V. Metabolomic approaches to phenotype characterization and applications to complex diseases. Expert Rev. Mol. Diagn. 6, 575–585 (2006).
    Xu, H. et al. Metabolomics profiling for obstructive sleep apnea and simple snorers. Sci. Rep. 6, 30958 (2016).
    Ferrarini, A. et al. Fingerprinting-based metabolomic approach with LC-MS to sleep apnea and hypopnea syndrome: a pilot study. Electrophoresis 34, 2873–2881 (2013).
    Shinohara, M. et al. Plasma proteomic analysis in patients with obstructive sleep apnea syndrome. Sleep Biolog Rhythms. 10, 336–9 (2012).
    Khalyfa, A. et al. Circulating exosomes in obstructive sleep apnea as phenotypic biomarkers and mechanistic messengers of end-organ morbidity. Respir Physiol Neurobiol. 17, 30119–2 (2017).
    Rita, L., Bittencourt, A. & Caixeta, E. C. Critérios diagnósticos e tratamento dos distúrbios respiratórios do sono: SAOS. J. Bras. Pneumol. 36, 23–27 (2010).
    Giaccia, A. J., Simon, M. C. & Johnson, R. The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev. 18, 2183–2194 (2004).
    Semenza, G. L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. STKE. 407, https://doi.org/10.1126/stke.4072007cm8 (2007).
    Safran, M. & Kaelin, W. G. HIF hydroxylation and the mammalian oxygen-sensing pathway. J. Clin. Invest. 111, 779–783 (2003).
    Semenza, G. L. A compendium of proteins that interact with HIF-1α. Exp Cell Res. 356(2), 128–135 (2017).
    He, G. et al. The effect of HIF-1α on glucose metabolism, growth and apoptosis of pancreatic cancerous cells. Asia Pac J Clin Nutr. 23, 174–80 (2014).
    Wong, C. M., Wong, K. H. & Chen, X. D. Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl. Microbiol. Biotechnol. 78, 927–938 (2008).
    Kotyk, A., Michaljanicová, D., Veres, K. & Soukupová, V. Transport of 4-deoxy- and 6-deoxy-D-glucose in baker’s yeast. Folia Microbiol. 20, 496–503 (1975).
    Lavie, L. Oxidative stress–a unifying paradigm in obstructive sleep apnea and comorbidities. Prog Cardiovasc Dis. 51(4), 303–12 (2009).
    Henriksen, E. J. et al. Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic Biol Med. 51(5), 993–9 (2011).
    Drager, L. et al. Obstructive sleep apnea: an emerging risk factor for atherosclerosis. Chest. 140, 534–542 (2011).
    Hochachka, P. W. Defense strategies against hypoxia and hypothermia. Science 231, 234–241 (1986).
    Kheirandish-Gozal, L., Philby, M. F., Qiao, Z., Khalyfa, A. & Gozal, D. Endothelial dysfunction in children with obstructive sleep apnea is associated with elevated lipoprotein‐associated phospholipase A2 plasma activity levels. J. Am. Heart Assoc. 6, e004923, https://doi.org/10.1161/JAHA.116.004923 (2017).
    Micova, P. et al. Chronic intermittent hypoxia affects the cytosolic phospholipase A2α/cyclooxygenase 2 pathway via β2-adrenoceptor-mediated ERK/p38 stimulation. Mol. Cell Biochem. 423, 151–163 (2016).
    Weber, P. C. et al. Arachidonic acid metabolites, hypertension and arteriosclerosis. Klin. Wochenschr. 60, 479–488 (1982).
    Suzuki, J. et al. Roles of prostaglandin E2 in cardiovascular diseases. Int Heart J. 52, 266–9 (2011).
    Barbour, B., Szatkowski, M., Ingledew, N. & Attwell, D. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells. Nature 342, 918–920 (1989).
    Platt, S. R. The role of glutamate in central nervous system health and disease–a review. Vet J. 173, 278–86 (2007).
    Chatterjee, S. Sphingolipids in atherosclerosis and vascular biology. Arterioscler Thromb Vasc Biol. 18, 1523–33 (1998).
    Caretti, A. et al. Cross-talk between hypoxia and sphingolipid signaling. Recent Res. Devel. Mol. Cell Biochem. 2, ISBN: 81-7736-294-1 (2005).
    Watts, J. L. & Browse, J. A palmitoyl-CoA-specific ∆9 fatty acid desaturase from Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 272, 263–269 (2000).
    Kheirandish-Gozal, L. & Gozal, D. Pediatric OSA Syndrome Morbidity Biomarkers: The Hunt Is Finally On! Chest. 151(2), 500–506 (2017).
    Marti-Soler, H. et al. The NoSAS score for screening of sleep-disordered breathing: a derivation and validation study. Lancet Respir Med. 4, 742–8 (2016).
    Netzer, N. C. et al. Using the Berlin Questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med. 131, 485–491 (1999).
    Berry, R. B. et al. The AASM manual for the scoring of sleep and associated events. Rules, terminology and technical specifications. Version 2.2. http://www.aasmnet.org (2012).
    Chowdhuri, S. et al. An Official American Thoracic Society Research Statement: Impact of Mild Obstructive Sleep Apnea in Adults. Am J Respir Crit Care Med. 193, e37–54 (2016).
    Note, A. Metabolite Identification in Blood Plasma Using GC/MS and the Agilent Fiehn GC/MS Metabolomics RTL Library. 0–7 (2009).
    Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 49, 1137–1146 (2008).
    Vieira, J. G. H. et al. Determination of cortisol and cortisone in human saliva by a liquid chromatography-tandem mass spectrometry method. Arq Bras Endocrinol Metab. 58, 844–850 (2014).
    Salgueiro, J. S. Nova estratégia bioanalítica baseada em cromatografia líquida e espectrometria de massas em tandem para a quantificação de aminoácidos em matrizes biológicas: uma ferramenta clínica e experimental. São Paulo: USP (2015).
    Venables, W. N. & Ripley, B. D. Modern Applied Statistics With S (Statistics And Computing). 4th edition. (Springer, New York 2003).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020