Exportar registro bibliográfico


Metrics:

Ecophysiological plasticity of Amazonian trees to long-term drought (2018)

  • Authors:
  • Autor USP: MARTINELLI, LUIZ ANTONIO - CENA
  • Unidade: CENA
  • DOI: 10.1007/s00442-018-4195-2
  • Subjects: MUDANÇA CLIMÁTICA; ISÓTOPOS ESTÁVEIS; NUTRIENTES; FLORESTAS
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Oecologia
    • Volume/Número/Paginação/Ano: v. 187, n. 4, p. 933–940, 2018
  • DOI
    Informações sobre o DOI: 10.1007/s00442-018-4195-2 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      DOMINGUES, Tomas Ferreira; OMETTO, Jean Pierre Henry Balbaud; NEPSTAD, Daniel C; et al. Ecophysiological plasticity of Amazonian trees to long-term drought. Oecologia, Berlin, v. 187, n. 4, p. 933–940, 2018. DOI: 10.1007/s00442-018-4195-2.
    • APA

      Domingues, T. F., Ometto, J. P. H. B., Nepstad, D. C., Brando, P. M., Martinelli, L. A., & Ehleringer, J. R. (2018). Ecophysiological plasticity of Amazonian trees to long-term drought. Oecologia, 187( 4), 933–940. doi:10.1007/s00442-018-4195-2
    • NLM

      Domingues TF, Ometto JPHB, Nepstad DC, Brando PM, Martinelli LA, Ehleringer JR. Ecophysiological plasticity of Amazonian trees to long-term drought. Oecologia. 2018 ; 187( 4): 933–940.
    • Vancouver

      Domingues TF, Ometto JPHB, Nepstad DC, Brando PM, Martinelli LA, Ehleringer JR. Ecophysiological plasticity of Amazonian trees to long-term drought. Oecologia. 2018 ; 187( 4): 933–940.

    Referências citadas na obra
    Anderegg WRL, Flint A, Huang CY et al (2015) Tree mortality predicted from drought-induced vascular damage. Nat Geosci 8(5):367–371. https://doi.org/10.1038/ngeo2400
    Andreae MO, Rosenfeld D, Artaxo P et al (2004) Smoking rain clouds over the Amazon. Science 303(5662):1337–1342. https://doi.org/10.1126/science.1092779
    Blumenthal SA, Rothman JM, Chritz KL et al (2016) Stable isotopic variation in tropical forest plants for applications in primatology. Am J Primatol 78:1041–1054. https://doi.org/10.1002/ajp.22488
    Boisier JP, Ciais P, Ducharne A et al (2015) Projected strengthening of Amazonian dry season by constrained climate model simulations. Nat Clim Chang 5(7):656–660. https://doi.org/10.1038/nclimate2658
    Brando PM, Nepstad DC, Davidson EA et al (2008) Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos Trans R Soc B 363:1839–1848. https://doi.org/10.1098/rstb.2007.0031
    Carswell FE, Meir P, Wandelli EV et al (2000) Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol 20:179–186. https://doi.org/10.1093/treephys/20.3.179
    Cernusak LA, Winter K, Turner BL (2009) Physiological and isotopic (δ13C and δ18O) responses of three tropical tree species to water and nutrient availability. Plant Cell Environ 32:1441–1455. https://doi.org/10.1111/j.1365-3040.2009.02010.x
    Cox P, Betts R, Collins M et al (2004) Amazonian forest dieback under climate-carbon cycle projections for the 21st century. Theor Appl Climatol 78:137–156. https://doi.org/10.1007/s00704-004-0049-4
    Cox PM, Pearson D, Booth BB et al (2013) Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494(7437):341–344. https://doi.org/10.1038/nature11882
    Domingues TF, Martinelli LA, Ehleringer JR (2007) Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazônia, Brazil. Plant Ecol 193:101–112. https://doi.org/10.1007/s11258-006-9251-z
    Domingues TF, Martinelli LA, Ehleringer JR (2013) Seasonal patterns of leaf-level photosynthetic gas exchange in an eastern Amazonian rain forest. Plant Ecol Divers 7:189–203. https://doi.org/10.1080/17550874.2012.748849
    Duffy PB, Brando P, Asner GP, Field CB (2015) Projections of future meteorological drought and wet periods in the Amazon. Proc Natl Acad Sci 112(43):13172–13177. https://doi.org/10.1073/pnas.1421010112
    Farquhar GD, Werselaar R, Firth PM (1979) Ammonia volatilization from senescing leaves of maize. Science 203(4386):1257–1258. https://doi.org/10.1126/science.203.4386.1257
    Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Phys Plant Mol Biol 40:503–537. https://doi.org/10.1146/annurev.pp.40.060189.002443
    Feldpausch TR, Phillips OL, Brienen RJW et al (2017) Amazon forest response to repeated droughts. Glob Biogeochem Cycles 30(7):964–982. https://doi.org/10.1002/2015GB005133
    Flexas J, Ribas-Carbó M, Diaz-Espejo A et al (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–621. https://doi.org/10.1111/J.1365-3040.2007.01757.X
    Fyllas NM, Patiño S, Baker TR et al (2009) Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6:2677–2708. https://doi.org/10.5194/bg-6-2677-2009
    Högberg P, Johnnisson C, Högberg M et al (1995) Measurements of abundances of 15N and 13C as tools in retrospective studies of N balances and water stress in forests: a discussion of preliminary results. Plant Soil 168:125–133. https://doi.org/10.1007/BF00029321
    Huntingford C, Zelazowski P, Galbraith D et al (2013) Simulated resilience of tropical rainforests to CO2-induced climate change. Nat Geosci 6(4):268–273. https://doi.org/10.1038/ngeo1741
    Marengo JA, Ambrizzi T, da Rocha H et al (2010) Future change of climate in South America in the late twenty-first century: intercomparison of scenarios from three regional climate models. Clim Dyn 35(6):1073–1097. https://doi.org/10.1007/s00382-009-0721-6
    McDowell N, Pockman WT, Allen CD et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x
    Nardoto GB, Quesada CA, Patiño S et al (2014) Basin-wide variations in Amazon forest nitrogen-cycling characteristics as inferred from plant and soil 15N:14N measurements. Plant Ecol Divers 7:173–187. https://doi.org/10.1080/17550874.2013.807524
    Nepstad DC, de Carvalho CR, Davidson EA et al (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372(6507):666–669. https://doi.org/10.1038/372666a0
    Nepstad DC, Moutinho P, Dias-Filho MB et al (2002) The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. J Geophys Res 107(D20):8085. https://doi.org/10.1029/2001JD000360
    Nepstad DC, Tohver IM, Ray D et al (2007) Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88:2259–2269. https://doi.org/10.1890/06-1046.1
    Norby RJ, De Kauwe MG, Domingues TF et al (2016) Model-data synthesis for the next generation of forest free-air CO2 enrichment (FACE) experiments. New Phytol 209:17–28. https://doi.org/10.1111/nph.13593
    Oliveira RS, Dawson TE, Burgess SSO et al (2005) Hydraulic redistribution in three Amazonian trees. Oecologia 145:354–363. https://doi.org/10.1007/s00442-005-0108-2
    Ometto JPHB, Ehleringer JR, Domingues TF et al (2006) The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistry 79:251–274. https://doi.org/10.1007/s10533-006-9008-8
    Quesada CA, Lloyd J, Schwarz M et al (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7:1515–1541. https://doi.org/10.5194/bg-7-1515-2010
    Roberts P, Blumenthal SA, Dittus W et al (2017) Stable carbon, oxygen, and nitrogen, isotope analysis of plants from a South Asian tropical forest: implications for primatology. Am J Primatol. https://doi.org/10.1002/ajp.22656
    Rowland L, da Costa ACL, Galbraith DR et al (2015) Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528(7580):119–122. https://doi.org/10.1038/nature15539
    Silva-Dias MAF, Rutledge S, Kabat P et al (2002) Cloud and rain processes in a biosphere–atmosphere interaction context in the Amazon Region. J Geophys Res 107(D20):8072. https://doi.org/10.1029/2001JD000335
    Sperry JS (2000) Hydraulic constraints on plant gas exchange. Agric For Meteorol 104(1):13–23. https://doi.org/10.1016/S0168-1923(00)00144-1

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021