Exportar registro bibliográfico


Metrics:

Systematic identification of novel regulatory interactions controlling biofilm formation in the bacterium Escherichia coli (2017)

  • Authors:
  • USP affiliated author: ROCHA, RAFAEL SILVA - FMRP
  • School: FMRP
  • DOI: 10.1038/s41598-017-17114-6
  • Subjects: BIOFILMES; ESCHERICHIA COLI; DIAGNÓSTICO POR COMPUTADOR
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Online source accessDOI
    Informações sobre o DOI: 10.1038/s41598-017-17114-6 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      AMORES, Gerardo Ruiz; HERAS, Aitor de las; SANCHES-MEDEIROS, Ananda; ELFICK, Alistair; SILVA-ROCHA, Rafael. Systematic identification of novel regulatory interactions controlling biofilm formation in the bacterium Escherichia coli. Scientific Reports, London, v. 7, 2017. Disponível em: < http://dx.doi.org/10.1038/s41598-017-17114-6 > DOI: 10.1038/s41598-017-17114-6.
    • APA

      Amores, G. R., Heras, A. de las, Sanches-Medeiros, A., Elfick, A., & Silva-Rocha, R. (2017). Systematic identification of novel regulatory interactions controlling biofilm formation in the bacterium Escherichia coli. Scientific Reports, 7. doi:10.1038/s41598-017-17114-6
    • NLM

      Amores GR, Heras A de las, Sanches-Medeiros A, Elfick A, Silva-Rocha R. Systematic identification of novel regulatory interactions controlling biofilm formation in the bacterium Escherichia coli [Internet]. Scientific Reports. 2017 ; 7Available from: http://dx.doi.org/10.1038/s41598-017-17114-6
    • Vancouver

      Amores GR, Heras A de las, Sanches-Medeiros A, Elfick A, Silva-Rocha R. Systematic identification of novel regulatory interactions controlling biofilm formation in the bacterium Escherichia coli [Internet]. Scientific Reports. 2017 ; 7Available from: http://dx.doi.org/10.1038/s41598-017-17114-6

    Referências citadas na obra
    Beloin, C., Roux, A. & Ghigo, J. M. Escherichia coli biofilms. Current topics in microbiology and immunology 322, 249–289 (2008).
    Laverty, G., Gorman, S. P. & Gilmore, B. F. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation. Pathogens 3, 596–632, https://doi.org/10.3390/pathogens3030596 (2014).
    Solano, C., Echeverz, M. & Lasa, I. Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18, 96–104, https://doi.org/10.1016/j.mib.2014.02.008 (2014).
    Martinez-Antonio, A., Janga, S. C. & Thieffry, D. Functional organisation of Escherichia coli transcriptional regulatory network. J Mol Biol 381, 238–247, https://doi.org/10.1016/j.jmb.2008.05.054 (2008).
    Ogasawara, H., Yamamoto, K. & Ishihama, A. Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J Bacteriol 193, 2587–2597, https://doi.org/10.1128/JB.01468-10 (2011).
    Sanchez-Torres, V., Hu, H. & Wood, T. K. GGDEF proteins YeaI, YedQ, and YfiN reduce early biofilm formation and swimming motility in Escherichia coli. Appl Microbiol Biotechnol 90, 651–658, https://doi.org/10.1007/s00253-010-3074-5 (2011).
    Serra, D. O., Richter, A. M., Klauck, G., Mika, F. & Hengge, R. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. MBio 4, e00103–00113, https://doi.org/10.1128/mBio.00103-13 (2013).
    Pesavento, C. et al. Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes & development 22, 2434–2446, https://doi.org/10.1101/gad.475808 (2008).
    Sommerfeldt, N. et al. Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli. Microbiology 155, 1318–1331, https://doi.org/10.1099/mic.0.024257-0 (2009).
    Valentini, M. & Filloux, A. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria. J Biol Chem 291, 12547–12555, https://doi.org/10.1074/jbc.R115.711507 (2016).
    Chevance, F. F. & Hughes, K. T. Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6, 455–465, https://doi.org/10.1038/nrmicro1887 (2008).
    Mika, F. & Hengge, R. Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli. RNA Biol 11, 494–507, https://doi.org/10.4161/rna.28867 (2014).
    Hengge, R. Stationary-Phase Gene Regulation in Escherichia coli §. EcoSal Plus 4, https://doi.org/10.1128/ecosalplus.5.6.3 (2011).
    Petrova, O. E. & Sauer, K. Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol 30, 67–78, https://doi.org/10.1016/j.mib.2016.01.004 (2016).
    Srivastava, S. & Bhargava, A. Biofilms and human health. Biotechnology letters 38, 1–22, https://doi.org/10.1007/s10529-015-1960-8 (2016).
    Martínez-Antonio, A. & Collado-Vides, J. Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6, 482–489 (2003).
    Ishihama, A. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks. FEMS Microbiol Rev 34, 628–645, https://doi.org/10.1111/j.1574-6976.2010.00227.x (2010).
    Shimizu, K. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions. Advances in biochemical engineering/biotechnology 155, 1–54, https://doi.org/10.1007/10_2015_320 (2016).
    McLeod, S. M. & Johnson, R. C. Control of transcription by nucleoid proteins. Curr Opin Microbiol 4, 152–159 (2001).
    Dillon, S. C. & Dorman, C. J. Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8, 185–195, https://doi.org/10.1038/nrmicro2261 (2010).
    Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2, 95–108, https://doi.org/10.1038/nrmicro821 (2004).
    Wood, T. K., Hong, S. H. & Ma, Q. Engineering biofilm formation and dispersal. Trends Biotechnol 29, 87–94, https://doi.org/10.1016/j.tibtech.2010.11.001 (2011).
    Huerta, A. M., Salgado, H., Thieffry, D. & Collado-Vides, J. RegulonDB: a database on transcriptional regulation in Escherichia coli. Nucleic Acids Res 26, 55–59 (1998).
    Wixon, J. & Kell, D. The Kyoto encyclopedia of genes and genomes–KEGG. Yeast 17, 48–55, https://doi.org/10.1002/(SICI)1097-0061(200004)17:1<48::AID-YEA2>3.0.CO;2-H (2000).
    Tomoyasu, T. et al. The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J Bacteriol 184, 645–653 (2002).
    Martinez-Antonio, A. & Collado-Vides, J. Identifying global regulators in transcriptional regulatory networks in bacteria. Curr Opin Microbiol 6, 482–489 (2003).
    Guazzaroni, M. E. & Silva-Rocha, R. Expanding the logic of bacterial promoters using engineered overlapping operators for global regulators. ACS synthetic biology 3, 666–675, https://doi.org/10.1021/sb500084f (2014).
    Amores, G. R., Guazzaroni, M. E. & Silva-Rocha, R. Engineering Synthetic cis-Regulatory Elements for Simultaneous Recognition of Three Transcriptional Factors in Bacteria. ACS Synth Biol. https://doi.org/10.1021/acssynbio.5b00098 (2015).
    Venturi, V. Control of rpoS transcription in Escherichia coli and Pseudomonas: why so different? Mol Microbiol 49, 1–9 (2003).
    Liu, X. & Matsumura, P. The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. J Bacteriol 176, 7345–7351 (1994).
    Kalir, S. & Alon, U. Using a quantitative blueprint to reprogram the dynamics of the flagella gene network. Cell 117, 713–720 (2004).
    Chirwa, N. T. & Herrington, M. B. CsgD, a regulator of curli and cellulose synthesis, also regulates serine hydroxymethyltransferase synthesis in Escherichia coli K-12. Microbiology 149, 525–535, https://doi.org/10.1099/mic.0.25841-0 (2003).
    Ogasawara, H., Yamada, K., Kori, A., Yamamoto, K. & Ishihama, A. Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors. Microbiology 156, 2470–2483, https://doi.org/10.1099/mic.0.039131-0 (2010).
    Gerstel, U., Park, C. & Romling, U. Complex regulation of csgD promoter activity by global regulatory proteins. Mol Microbiol 49, 639–654 (2003).
    Barembruch, C. & Hengge, R. Cellular levels and activity of the flagellar sigma factor FliA of Escherichia coli are controlled by FlgM-modulated proteolysis. Mol Microbiol 65, 76–89, https://doi.org/10.1111/j.1365-2958.2007.05770.x (2007).
    Gualdi, L. et al. Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Microbiology 154, 2017–2024, https://doi.org/10.1099/mic.0.2008/018093-0 (2008).
    White-Ziegler, C. A. et al. Low temperature (23 degrees C) increases expression of biofilm-, cold-shock- and RpoS-dependent genes in Escherichia coli K-12. Microbiology 154, 148–166, https://doi.org/10.1099/mic.0.2007/012021-0 (2008).
    Hengge-Aronis, R. Recent insights into the general stress response regulatory network in Escherichia coli. Journal of molecular microbiology and biotechnology 4, 341–346 (2002).
    Mangan, M. W. et al. The integration host factor (IHF) integrates stationary-phase and virulence gene expression in Salmonella enterica serovar Typhimurium. Mol Microbiol 59, 1831–1847, https://doi.org/10.1111/j.1365-2958.2006.05062.x (2006).
    Martinez-Santos, V. I., Medrano-Lopez, A., Saldana, Z., Giron, J. A. & Puente, J. L. Transcriptional regulation of the ecp operon by EcpR, IHF, and H-NS in attaching and effacing Escherichia coli. J Bacteriol 194, 5020–5033, https://doi.org/10.1128/JB.00915-12 (2012).
    Huang, J. et al. [Identification of rpoE gene associated with biofilm formation of Salmonella pullorum]. Wei sheng wu xue bao=Acta microbiologica Sinica 55, 156–163 (2015).
    Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2, 2006.0008, https://doi.org/10.1038/msb4100050 (2006).
    Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular cloning: A laboratory manual. (Cold Spring Harbor, 1989).
    Sperandio, V., Torres, A. G. & Kaper, J. B. Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Mol Microbiol 43, 809–821 (2002).
    O’Toole, G. A. Microtiter dish biofilm formation assay. Journal of visualized experiments: JoVE. https://doi.org/10.3791/2437 (2011).
    de Las Heras, A., Xiao, W., Sren, V. & Elfick, A. Edwin. SLAS technology 22, 50–62, https://doi.org/10.1177/2211068216655151 (2017).
    Prigent-Combaret, C. et al. Complex regulatory network controls initial adhesion and biofilm formation in Escherichia coli via regulation of the csgD gene. J Bacteriol 183, 7213–7223, https://doi.org/10.1128/JB.183.24.7213-7223.2001 (2001).
    Zhou, Y., Smith, D. R., Hufnagel, D. A. & Chapman, M. R. Experimental manipulation of the microbial functional amyloid called curli. Methods Mol Biol 966, 53–75, https://doi.org/10.1007/978-1-62703-245-2_4 (2013).
    Cline, M. S. et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2, 2366–2382, https://doi.org/10.1038/nprot.2007.324 (2007).
    Mika, F. & Hengge, R. A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli. Genes Dev 19, 2770–2781, https://doi.org/10.1101/gad.353705 (2005).
    Hengge, R. Proteolysis of sigmaS (RpoS) and the general stress response in Escherichia coli. Res Microbiol 160, 667–676, https://doi.org/10.1016/j.resmic.2009.08.014 (2009).
    Jofré, M. R. et al. RpoS integrates CRP, Fis, and PhoP signaling pathways to control Salmonella Typhi hlyE expression. BMC Microbiol 14, 139, https://doi.org/10.1186/1471-2180-14-139 (2014).
    Mika, F. & Hengge, R. Small Regulatory RNAs in the Control of Motility and Biofilm Formation in E. coli and Salmonella. Int J Mol Sci 14, 4560–4579, https://doi.org/10.3390/ijms14034560 (2013).
    Pasemann, F. Complex dynamics and the structure of small neural networks. Network 13, 195–216 (2002).
    Grant, S. G., Jessee, J., Bloom, F. R. & Hanahan, D. Differential plasmid rescue from transgenic mouse DNAs into Escherichia coli methylation-restriction mutants. Proc Natl Acad Sci USA 87, 4645–4649 (1990).
    Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97, 6640–6645, https://doi.org/10.1073/pnas.120163297 (2000).
    Bachmann, B. J. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev 36, 525–557 (1972).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020