Exportar registro bibliográfico


In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers (2018)

  • Authors:
  • School: IO
  • DOI: 10.1007/s00338-018-1692-z
  • Language: Inglês
  • Imprenta:
  • Source:
    • Título do periódico: Coral Reefs
    • Volume/Número/Paginação/Ano: v. 37, p. 677–689, 2018
  • Online source accessDOI
    Informações sobre o DOI: 10.1007/s00338-018-1692-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MIES, M; TANIGUCHI, Satie; BÍCEGO, Marcia Caruso; et al. In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers. Coral Reefs, Berlin, v. 37, p. 677–689, 2018. Disponível em: < https://doi.org/10.1007/s00338-018-1692-z > DOI: 10.1007/s00338-018-1692-z.
    • APA

      Mies, M., Taniguchi, S., Bícego, M. C., Tenorio Adame Antonio,, Banha, T. N. S., Polito, P. S., et al. (2018). In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers. Coral Reefs, 37, 677–689. doi:10.1007/s00338-018-1692-z
    • NLM

      Mies M, Taniguchi S, Bícego MC, Tenorio Adame Antonio, Banha TNS, Polito PS, Sumida PYG, Waters LJ, Guth AZ. In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers [Internet]. Coral Reefs. 2018 ; 37 677–689.Available from: https://doi.org/10.1007/s00338-018-1692-z
    • Vancouver

      Mies M, Taniguchi S, Bícego MC, Tenorio Adame Antonio, Banha TNS, Polito PS, Sumida PYG, Waters LJ, Guth AZ. In situ shifts of predominance between autotrophic and heterotrophic feeding in the reef-building coral Mussismilia hispida: an approach using fatty acid trophic markers [Internet]. Coral Reefs. 2018 ; 37 677–689.Available from: https://doi.org/10.1007/s00338-018-1692-z

    Referências citadas na obra
    Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. Journal of Experimental Marine Biology and Ecology 252:221–253
    Anthony KRN, Hoogenboom MO, Maynard JA, Grottoli AG, Middlebrook R (2009) Energetics approach to predicting mortality risk from environmental stress: a case study of coral bleaching. Functional Ecology 23:539–550
    Battey JF, Patton JS (1986) Glycerol translocation in Condylactis gigantea. Marine Biology 95:37–46
    Bishop DG, Kenrick JR (1980) Fatty acid composition of symbiotic zooxanthellae in relation to their hosts. Lipids 15:799–804
    Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology 37:911–917
    Budge SM, Iverson SJ, Koopman HN (2006) Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Marine Mammal Science 22:759–801
    Carvalho LMV, Jones C, Liebmann B (2004) The South Atlantic Convergence Zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. Journal of Climate 17:88–108
    Castro CB, Pires DO (2001) Brazilian coral reefs: what we already know and what is still missing. Bulletin of Marine Science 69:357–371
    Clark KB, Jensen KR (1982) Effects of temperature on carbon fixation and carbon budget partitioning in the zooxanthellal symbiosis of Aiptasia pallida (Verrill). Journal of Experimental Marine Biology and Ecology 64:215–230
    Colombo-Pallotta MF, Rodríguez-Román A, Iglesias-Prieto R (2010) Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29:899–907
    Conlan JA, Rocker MM, Francis DS (2017) A comparison of two common sample preparation techniques for lipid and fatty acid analysis in three different coral morphotypes reveals quantitative and qualitative differences. PeerJ, e3645
    Connell JH (1997) Disturbance and recovery of coral assemblages. Coral Reefs 16:S101–S113
    Connolly SR, Lopez-Yglesias MA, Anthony KRN (2012) Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs 31:951–960
    Costa CF, Sassi R, Gorlach-Lira K (2013) Diversity and seasonal fluctuations of microsymbionts associated with some scleractinian corals of the Picãozinho reefs of Paraíba State, Brazil. Pan-American Journal of Aquatic Sciences 8:240–252
    Crabbe MJC, Walker ELL, Stephenson DB (2008) The impact of weather and climate extremes on coral growth. In: Diaz H, Murnane R (eds) Climate Extremes and Society. Cambridge University Press, Cambridge, pp 165–188
    Crossland CJ, Barnes DJ, Borowitzka MA (1980) Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Marine Biology 60:81–90
    Dalsgaard J, St John M, Kattner G, Müller-Navarra D, Hagen W (2003) Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology 46:225–340
    Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Berchtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of The Royal Meteorological Society 137:553–597
    Dewick PM (2002) The biosynthesis of C5-C25 terpenoid compounds. Natural Product Reports 14:111–144
    Diaz JM, Hansel CM, Apprill A, Brighi C, Zhang T, Weber L, McNally S, Xun L (2016) Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event. Nature Communications 7:13801
    Dodds LA, Black KD, Roberts JM (2009) Lipid biomarkers reveal geographical differences in food supply to the cold-water coral Lophelia pertusa (Scleractinia). Marine Ecology Progress Series 397:113–124
    Ezzat L, Towle E, Irisson JO, Langdon C, Ferrier-Pagès C (2016) The relationship between heterotrophic feeding and inorganic nutrient availability in the scleractinian coral T. reniformis under a short-term temperature increase. Limonology and Oceanography 61:89–102
    Fabricius KE, Dommisse M (2000) Depletion of suspended particulate matter over coastal reef communities dominated by zooxanthellate soft corals. Marine Ecology Progress Series 196:157–167
    Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240
    Ferrier-Pagès C, Peirano A, Abbate M, Cocito S, Negri A, Rottier C, Riera P, Rodolfo-Metalpa R, Reynaud S (2011) Summer autotrophy and winter heterotrophy in the temperate symbiotic coral Cladocora caespitosa. Limnology and Oceanography 56:1429–1438
    Furla P, Galgani I, Durand I, Allemand D (2000) Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. Journal of Experimental Biology 203:3445–3457
    Glynn PW, D’Croz L (1990) Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8:181–191
    Grottoli AG, Wellington GM (1999) Effect of light and zooplankton on skeletal δ13C values in the eastern Pacific corals Pavona clavus and Pavona gigantea. Coral Reefs 18:29–41
    Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189
    Hixon MA, Menge BA (1991) Species diversity: prey refuges modify the interactive effects of predation and competition. Theoretical Population Biology 39:178–200
    Hoogenboom M, Rodolfo-Metalpa R, Ferrier-Pagès C (2010) Co-variation between autotrophy and heterotrophy in the Mediterranean coral Cladocora caespitosa. Journal of Experimental Biology 213:2399–2409
    Houlbrèque F, Ferrier-Pagès C (2009) Heterotrophy in tropical scleractinian corals. Biological Reviews 84:1–17
    Houlbrèque F, Tambutté E, Ferrier-Pagès C (2003) Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. Journal of Experimental Biology 296:145–166
    Hughes AD, Grottoli AG (2013) Heterotrophic compensation: a possible mechanism for resilience of coral reefs to global warming or a sign of prolonged stress? PLoS ONE 8(11):e81172
    Leal MC, Nejstgaard JC, Calado R, Thompson ME, Frischer ME (2014) Molecular assessment of heterotrophy and prey digestion in zooxanthellate cnidarians. Molecular Ecology 23:3838–3848
    Leão ZMAN, Kikuchi RKP, Ferreira BP, Neves EG, Sovierzoski HH, Oliveira MDM, Maida M, Correia MD, Johnsson R (2016) Brazilian coral reefs in a period of global change: a synthesis. Brazilian Journal of Oceanography 64:97–116
    Levas S, Grottoli AG, Schoepf V, Aschaffenburg M, Baumann J, Bauer JE, Warner ME (2016) Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals? Coral Reefs 35:495–506
    Lewis JB (1992) Heterotrophy in corals: zooplankton predation by the hydrocoral Millepora complanata. Marine Ecology Progress Series 90:251–256
    Lima KC, Satyamurty P, Fernández JPR (2010) Large-scale atmospheric conditions associated with heavy rainfall episodes in Southeast Brazil. Theoretical and Applied Climatology 101:121–135
    Lorenzzetti JA, Stech JL, Mello Filho WL, Assireu AT (2009) Satellite observation of Brazil Current inshore thermal fronts in the SW Atlantic: space/time variability and sea surface temperatures. Continental Shelf Research 29:2061–2068
    Mies M, Chaves-Filho AB, Miyamoto S, Güth AZ, Tenório AA, Castro CB, Pires DO, Calderon EN, Sumida PYG (2017) Production of three symbiosis-related fatty acids by Symbiodinium types in clades A-F associated with marine invertebrate larvae. Coral Reefs 36:1319–1328
    Montgomery RS, Strong AE (1994) Coral bleaching threatens oceans, life. Eos, Transactions, American Geophysical Union 75:145–147
    Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in coral reefs. In: Dubinsky Z (ed) Ecosystems of the World. Elsevier, Amsterdam, pp 75–87
    Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnology and Oceanography 26:601–611
    Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27:454–460
    Oigman-Pszczol SS, Creed JC (2004) Size structure and spatial distribution of the corals Mussismilia hispida and Siderastrea stellata (Scleractinia) at Armação dos Búzios, Brazil. Bulletin of Marine Science 74:433–448
    Palardy JE, Grottoli AG, Matthews KA (2005) Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Marine Ecology Progress Series 300:79–89
    Palardy JE, Grottoli AG, Matthews KA (2006) Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. Journal of Experimental Marine Biology and Ecology 331:99–107
    Papina M, Meziane T, van Woesik R (2003) Symbiotic zooxanthellae provide the host-coral Montipora digitata with polyunsaturated fatty acids. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology 135:533–537
    Peluso L, Tascheri V, Nunes FLD, Castro CB, Pires DO, Zilberberg C (2018) Contemporary and historical oceanographic processes explain genetic connectivity in a Southwestern Atlantic coral. Scientific Reports 8:2684
    Porter JW (1976) Autotrophy, heterotrophy, and resource partitioning in Caribbean reef-building corals. The American Naturalist 110:731–742
    Roder C, Fillinger L, Jantzen C, Schmidt GM, Khokiattiwong S, Richter C (2010) Trophic response of corals to large amplitude internal waves. Marine Ecology Progress Series 412:113–128
    Roth M (2014) The engine of the reef: photobiology of the coral-algal symbiosis. Frontiers in Microbiology 5:422
    Ruess L, Tiunov A, Haubert D, Richnow HH, Häggblom MM, Scheu S (2005) Carbon stable isotope fractionation and trophic transfer of fatty acids in fungal based soil food chains. Soil Biology and Biochemistry 37:945–953
    Sargent JR, Bell MV, Henderson RJ, Tocher DR (1990) Polyunsaturated fatty acids in marine and terrestrial food webs. In: Mellinger J. (ed) Animal Nutrition and Transport Processes. 1. Nutrition in Wild and Domestic Animals, Comparative Physiology. Karger, Basel, Switzerland, pp 11–23
    Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Marine Biology 127:303–317
    Seemann J, Sawall Y, Auel H, Richter C (2013) The use of lipids and fatty acids to measure the trophic plasticity of the coral Stylophora subseriata. Lipids 48:275–286
    Sheppard CR, Davy SK, Pilling GM (2009) The Biology of Coral Reefs. Oxford University Press, Oxford
    Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and scleractinian hosts-symbiosis, diversity, and the effect of climate change. Perspectives in Plant Ecology, Evolution and Systematics 8:23–43
    Teece MA, Estes B, Gelsleichter E, Lirman D (2011) Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnology and Oceanography 56:1285–1296
    Titlyanov EA, Titlyanova TV, Yamazato K, van Woesik R (2001) Photo-acclimation dynamics of the coral Stylophora pistillata to low and extremely low light. Journal of Experimental Marine Biology and Ecology 263:211–225
    Tomascik T, Sander F (1985) Effects of eutrophication on reef-building corals 1. Growth rate of the reef-building coral Montastrea annularis. Marine Biology 87:143–156
    Treignier C, Grover R, Ferrier-Pagès C, Tolosa I (2008) Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limonology and Oceanography 53:2702–2710
    Tremblay P, Gori A, Maguer JF, Hoogenboom M, Ferrier-Pagès C (2016) Heterotrophy promotes the re-establishment of photosynthate translocation in a symbiotic coral after heat stress. Scientific Reports 6:38112
    Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. Journal of Experimental Botany 59:1069–1080
    Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology 128:219–240
    Vytopil E, Willis B (2001) Epifaunal community structure in Acropora spp. (Scleractinia) on the Great Barrier Reef: implications of coral morphology and habitat complexity. Coral Reefs 20:281–288
    Zhukova NV, Titlyanov EA (2003) Fatty acid variations in symbiotic dinoflagellates from Okinawan corals. Phytochemistry 62:191–195

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020