Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: a comparison across functional and structural imaging modalities and atlases (2018)
- Authors:
- USP affiliated authors: LEITE, CLAUDIA DA COSTA - FM ; NITRINI, RICARDO - FM ; BUCHPIGUEL, CARLOS ALBERTO - FM ; BUSATTO FILHO, GERALDO - FM
- Unidade: FM
- DOI: 10.1016/j.nicl.2017.10.026
- Subjects: IMAGEM POR RESSONÂNCIA MAGNÉTICA; DIAGNÓSTICO POR IMAGEM; DOENÇA DE ALZHEIMER; MORFOMETRIA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Neuroimage-clinical
- ISSN: 2213-1582
- Volume/Número/Paginação/Ano: v. 17, p. 628-641, 2018
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by-nc-nd
-
ABNT
RONDINA, Jane Maryam et al. Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: a comparison across functional and structural imaging modalities and atlases. Neuroimage-clinical, v. 17, p. 628-641, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.nicl.2017.10.026. Acesso em: 09 nov. 2024. -
APA
Rondina, J. M., Leite, C. C., Nitrini, R., Buchpiguel, C. A., & Busatto Filho, G. (2018). Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: a comparison across functional and structural imaging modalities and atlases. Neuroimage-clinical, 17, 628-641. doi:10.1016/j.nicl.2017.10.026 -
NLM
Rondina JM, Leite CC, Nitrini R, Buchpiguel CA, Busatto Filho G. Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: a comparison across functional and structural imaging modalities and atlases [Internet]. Neuroimage-clinical. 2018 ; 17 628-641.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.nicl.2017.10.026 -
Vancouver
Rondina JM, Leite CC, Nitrini R, Buchpiguel CA, Busatto Filho G. Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: a comparison across functional and structural imaging modalities and atlases [Internet]. Neuroimage-clinical. 2018 ; 17 628-641.[citado 2024 nov. 09 ] Available from: https://doi.org/10.1016/j.nicl.2017.10.026 - Support vector machine-based classification of neuroimages in Alzheimer's disease: direct comparison of FDG-PET, rCBF-SPECT and MRI data acquired from the same individuals
- Diagnosis of regional cerebral blood flow abnormalities using SPECT: agreement between individualized statistical parametric maps and visual inspection by nuclear medicine physicians with different levels of expertise in nuclear neurology
- Methodologial comparison between nuclear physician with different levels of experience with Statistical Parametric Mapping in neurological disorders
- Episodic Memory, Hippocampal Volume, and Function for Classification of Mild Cognitive Impairment Patients Regarding Amyloid Pathology
- PET vs SPECT in Alzheimer patients. A controlled study
- Hippocampal subregional volume changes in elders classified using positron emission tomographybased Alzheimer's biomarkers of β-amyloid deposition and neurodegeneration
- Pet vs Spect em pacientes com doença de alzheimer
- Imaging substrates in early Alzheimer's disease: A spect, FDG-PET and volumetric MRI correlation study
- Psychotic symptoms in major depressive disorder are associated with reduced regional cerebral blood flow in the subgenual anterior cingulate cortex: a voxel-based single photon emission computed tomography (SPECT) study
- A voxel-based morphometry study of correlations between regional cerebral blood flow and cognitive alterations in patients with Alzheimer's disease after 4, 5 years of follow up
Informações sobre o DOI: 10.1016/j.nicl.2017.10.026 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas