Exportar registro bibliográfico


Metrics:

The active transport of histidine and its role in ATP production in Trypanosoma cruzi (2016)

  • Authors:
  • Autor USP: SILBER, ARIEL MARIANO - ICB
  • Unidade: ICB
  • DOI: 10.1007/s10863-016-9665-9
  • Subjects: PARASITOLOGIA; TRYPANOSOMA CRUZI; DOENÇA DE CHAGAS; AMINOÁCIDOS
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s10863-016-9665-9 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BARISÓN, M. J.; DAMASCENO, F. S. ; MANTILLA, B. S. ; SILBER, Ariel Mariano. The active transport of histidine and its role in ATP production in Trypanosoma cruzi. Journal of Bioenergetics and Biomembranes, New York, Springer, v. 48, n. 4, p. 437-449, 2016. Disponível em: < http://dx.doi.org/10.1007/s10863-016-9665-9 > DOI: 10.1007/s10863-016-9665-9.
    • APA

      Barisón, M.  J., Damasceno, F.  S.  , Mantilla, B.  S.  , & Silber, A. M. (2016). The active transport of histidine and its role in ATP production in Trypanosoma cruzi. Journal of Bioenergetics and Biomembranes, 48( 4), 437-449. doi:10.1007/s10863-016-9665-9
    • NLM

      Barisón M J, Damasceno F S , Mantilla B S , Silber AM. The active transport of histidine and its role in ATP production in Trypanosoma cruzi [Internet]. Journal of Bioenergetics and Biomembranes. 2016 ; 48( 4): 437-449.Available from: http://dx.doi.org/10.1007/s10863-016-9665-9
    • Vancouver

      Barisón M J, Damasceno F S , Mantilla B S , Silber AM. The active transport of histidine and its role in ATP production in Trypanosoma cruzi [Internet]. Journal of Bioenergetics and Biomembranes. 2016 ; 48( 4): 437-449.Available from: http://dx.doi.org/10.1007/s10863-016-9665-9

    Referências citadas na obra
    Antunes LC, Han J, Pan J, Moreira CJ, Azambuja P, Borchers CH, Carels N (2013) Metabolic signatures of triatomine vectors of Trypanosoma cruzi unveiled by metabolomics. PLoS One 8:e77283
    Atwood JA 3rd, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, Orlando R, Tarleton RL (2005) The Trypanosoma cruzi proteome. Science 309:473–476
    Barrett FM, Friend WG (1975) Differences in the concentration of free amino acids in the haemolymph of adult male and female Rhodnius prolixus. Comp Biochem Physiol B 52:427–431
    Brand v (1979) Biochemistry and Physiology of Endoparasites. Elsevier/North Holland, Amsterdam
    Brener Z (1973) Biology of Trypanosoma cruzi. Annu Rev Microbiol 27:347–382
    Brener Z, Chiari E (1963) Morphological Variations Observed in Different Strains of Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 5:220–224
    Camargo EP (1964) Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop São Paulo 6:93–100
    Canepa GE, Silber AM, Bouvier LA, Pereira CA (2004) Biochemical characterization of a low-affinity arginine permease from the parasite Trypanosoma cruzi. FEMS Microbiol Lett 236:79–84
    Canepa GE, Bouvier LA, Urias U, Miranda MR, Colli W, Alves MJ, Pereira CA (2005) Aspartate transport and metabolism in the protozoan parasite Trypanosoma cruzi. FEMS Microbiol Lett 247:65–71
    Canepa GE, Bouvier LA, Miranda MR, Uttaro AD, Pereira CA (2009) Characterization of Trypanosoma cruzi L-cysteine transport mechanisms and their adaptive regulation. FEMS Microbiol Lett 292:27–32
    Cannata JJ, Cazzulo JJ (1984) The aerobic fermentation of glucose by Trypanosoma cruzi. Comp Biochem Physiol B 79:297–308
    Cazzulo JJ (1994) Intermediate metabolism in Trypanosoma cruzi. J Bioenerg Biomembr 26:157–165
    Cazzulo JJ, Franke de Cazzulo BM, Engel JC, Cannata JJ (1985) End products and enzyme levels of aerobic glucose fermentation in trypanosomatids. Mol Biochem Parasitol 16:329–343
    Contreras VT, Salles JM, Thomas N, Morel CM, Goldenberg S (1985) In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol 16:315–327
    El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415
    Engel JC, Franke de Cazzulo BM, Stoppani AO, Cannata JJ, Cazzulo JJ (1987) Aerobic glucose fermentation by Trypanosoma cruzi axenic culture amastigote-like forms during growth and differentiation to epimastigotes. Mol Biochem Parasitol 26:1–10
    Galvez Rojas RL, Ahn IY, Suarez Mantilla B, Sant’Anna C, Pral EM, Silber AM (2015) The Uptake of GABA in Trypanosoma cruzi. J Eukaryot Microbiol 62:629–636
    Hampton JR (1970) Lysine uptake in cultured Trypanosoma cruzi: interactions of competitive inhibitors. J Protozool 17:597–600
    Harington JS (1961a) Studies of the amino acids of Rhodnius prolixus I. Analysis of the haemolymph Parasitology 51:309–318
    Harington JS (1961b) Studies of the amino acids of Rhodnius prolixus II. Analysis of the excretory material Parasitology 51:319–326
    Inbar E, Canepa GE, Carrillo C, Glaser F, Suter Grotemeyer M, Rentsch D, Zilberstein D, Pereira CA (2012) Lysine transporters in human trypanosomatid pathogens. Amino Acids 42:347–360
    Kollien AH, Schaub GA (2000) The development of Trypanosoma cruzi in triatominae. Parasitol Today 16:381–387
    Magdaleno A, Ahn IY, Paes LS, Silber AM (2009) Actions of a proline analogue, L-thiazolidine-4-carboxylic acid (T4C), on Trypanosoma cruzi. PLoS One 4:e4534
    Manchola NC, Rapado LN, Barison MJ, Silber AM (2015) Biochemical characterization of branched chain amino acids uptake in Trypanosoma cruzi. J Eukaryot Microbiol.
    Mancilla R, Naquira C, Lanas C (1967) Protein biosynthesis in trypanosomidae. II. The metabolic fate of DL-leucine-1-C14 in Trypanosoma cruzi. Exp Parasitol 21:154–159
    Mantilla BS, Paes LS, Pral EM, Martil DE, Thiemann OH, Fernandez-Silva P, Bastos EL, Silber AM (2015) Role of Delta1-pyrroline-5-carboxylate dehydrogenase supports mitochondrial metabolism and host-cell invasion of Trypanosoma cruzi. J Biol Chem 290:7767–7790
    Martins RM, Covarrubias C, Rojas RG, Silber AM, Yoshida N (2009) Use of L-proline and ATP production by Trypanosoma cruzi metacyclic forms as requirements for host cell invasion. Infect Immun 77:3023–3032
    Minning TA, Weatherly DB, Atwood J 3rd, Orlando R, Tarleton RL (2009) The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics 10:370
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63
    Paes LS, Suarez Mantilla B, Zimbres FM, Pral EM, Diogo de Melo P, Tahara EB, Kowaltowski AJ, Elias MC, Silber AM (2013) Proline dehydrogenase regulates redox state and respiratory metabolism in Trypanosoma cruzi. PLoS One 8:e69419
    Peng D, Kurup SP, Yao PY, Minning TA, Tarleton RL (2015) CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. MBio 6:e02097–e02014
    Pereira CA, Alonso GD, Paveto MC, Flawia MM, Torres HN (1999) L-arginine uptake and L-phosphoarginine synthesis in Trypanosoma cruzi. J Eukaryot Microbiol 46:566–570
    Saye M, Miranda MR, di Girolamo F, de los Milagros Camara M, CA P (2014) Proline modulates the Trypanosoma cruzi resistance to reactive oxygen species and drugs through a novel D, L-proline transporter. PLoS One 9:e92028
    Silber AM, Tonelli RR, Martinelli M, Colli W, Alves MJ (2002) Active transport of L-proline in Trypanosoma cruzi. J Eukaryot Microbiol 49:441–446
    Silber AM, Rojas RL, Urias U, Colli W, Alves MJ (2006) Biochemical characterization of the glutamate transport in Trypanosoma cruzi. Int J Parasitol 36:157–163
    Silva Paes L, Suarez Mantilla B, Julia Barison M, Wrenger C, Mariano Silber A (2011) The uniqueness of the Trypanosoma cruzi mitochondrion: opportunities to target new drugs against Chagas disease. Curr Pharm Des 17:2074–2099
    Sylvester D, Krassner SM (1976) Proline metabolism in Trypanosoma cruzi epimastigotes. Comp Biochem Physiol B 55:443–447
    Teixeira MM, Yoshida N (1986) Stage-specific surface antigens of metacyclic trypomastigotes of Trypanosoma cruzi identified by monoclonal antibodies. Mol Biochem Parasitol 18:271–282
    Tetaud E, Bringaud F, Chabas S, Barrett MP, Baltz T (1994) Characterization of glucose transport and cloning of a hexose transporter gene in Trypanosoma cruzi. Proc Natl Acad Sci U S A 91:8278–8282
    Tonelli RR, Silber AM, Almeida-de-Faria M, Hirata IY, Colli W, Alves MJ (2004) L-proline is essential for the intracellular differentiation of Trypanosoma cruzi. Cell Microbiol 6:733–741
    Vickery HB (1942) The histidine content of the hemoglobin of man and of the horse and sheep, determined with the aid of 3,4-dichlorobenzenesulfonic acid. J Biol Chem 144:719–730
    WHO (2015) Chagas Disease (American trypanosomiasis)
    Zeledon R (1960) Comparative physiological studies on four species of hemoflagellates in culture. II Effect of carbohydrates and related substances and some amino compounds on the respiration J Parasitol 46:541–551

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021