Exportar registro bibliográfico


Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer (2018)

  • Authors:
  • USP affiliated authors: NETTO, PAULO EDUARDO ARTAXO - IF
  • Unidades: IF
  • DOI: 10.1038/s41598-018-29138-7
  • Agências de fomento:
  • Language: Inglês
  • Abstract: The Sao Paulo Metropolitan Area is a unique case worldwide due to the extensive use of biofuel, particularly ethanol, by its large fleet of nearly 8 million cars. Based on source apportionment analysis of Organic Aerosols in downtown Sao Paulo, and using ethanol as tracer of passenger vehicles, we have identified primary emissions from light-duty-vehicles (LDV) and heavy-duty-vehicles (HDV), as well as secondary process component. Each of those factors mirror a relevant primary source or secondary process in this densely occupied area. Using those factors as predictors in a multiple linear regression analysis of a wide range of pollutants, we have quantified the role of primary LDV or HDV emissions, as well as atmospheric secondary processes, on air quality degradation. Results show a significant contribution of HDV emissions, despite contributing only about 5% of vehicles number in the region. The latter is responsible, for example, of 40% and 47% of benzene and black carbon atmospheric concentration, respectively. This work describes an innovative use of biofuel as a tracer of passenger vehicle emissions, allowing to better understand the role of vehicular sources on air quality degradation in one of most populated megacities worldwide.
  • Imprenta:
  • Source:
  • Informações sobre o DOI: 10.1038/s41598-018-29138-7 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      BRITO, Joel; CARBONE, Samara; SANTOS, Djacindo A Monteiro dos; et al. Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Nature: Scientific Reports, London, Macmillan Magazines, v. 2018, n. 10679, p. 1-8, 2018. DOI: 10.1038/s41598-018-29138-7.
    • APA

      Brito, J., Carbone, S., Santos, D. A. M. dos, Dominutti, P. A., Alves, N. de O., Rizzo, L. V., & Artaxo Netto, P. E. (2018). Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Nature: Scientific Reports, 2018( 10679), 1-8. doi:10.1038/s41598-018-29138-7
    • NLM

      Brito J, Carbone S, Santos DAM dos, Dominutti PA, Alves N de O, Rizzo LV, Artaxo Netto PE. Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Nature: Scientific Reports. 2018 ; 2018( 10679): 1-8.
    • Vancouver

      Brito J, Carbone S, Santos DAM dos, Dominutti PA, Alves N de O, Rizzo LV, Artaxo Netto PE. Disentangling vehicular emission impact on urban air pollution using ethanol as a tracer. Nature: Scientific Reports. 2018 ; 2018( 10679): 1-8.

    Referências citadas na obra
    Underwood, E. The polluted brain. Science (80−). 355, 342–345 (2017).
    Gurjar, B. R., Butler, T. M., Lawrence, M. G. & Lelieveld, J. Evaluation of emissions and air quality in megacities. Atmos. Environ. 42, 1593–1606 (2008).
    Beirle, S., Boersma, K. F., Platt, U., Lawrence, M. G. & Wagner, T. Megacity Emissions and Lifetimes of Nitrogen Oxides Probed from Space. Science (80−). 333, 1737–1739 (2011).
    Molina, M. J. & Molina, L. T. Megacities and Atmospheric Pollution. J. Air Waste Manage. Assoc. 54, 644–680 (2004).
    Pérez-Martínez, P. J. et al. Emission factors of air pollutants from vehicles measured inside road tunnels in São Paulo: case study comparison. Int. J. Environ. Sci. Technol. 11, 2155–2168 (2014).
    Brito, J. et al. Physical–chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmos. Chem. Phys. 13, 12199–12213 (2013).
    CETESB. State of Sao Paulo vehicular emissions (2013).
    Gentner, D. R. et al. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions. Proc. Natl. Acad. Sci. 109, 18318–18323 (2012).
    Platt, S. M. et al. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Sci. Rep. 7, 4926 (2017).
    Bahreini, R. et al. Gasoline emissions dominate over diesel in formation of secondary organic aerosol mass. Geophys. Res. Lett. 39, 2–7 (2012).
    Andrade, M. d. F. et al. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmos. Environ. 159, 66–82 (2017).
    REN21. Renewables 2017: global status report (2017).
    Stone, V. et al. Nanomaterials Versus Ambient Ultrafine Particles: An Opportunity to Exchange Toxicology Knowledge. Environ. Health Perspect. 125, 1–17 (2017).
    Zhang, Q. et al. Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: A review. Anal. Bioanal. Chem. 401, 3045–3067 (2011).
    Kostenidou, E. et al. Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean. Atmos. Chem. Phys. 15, 11355–11371 (2015).
    Paciga, A. et al. Volatility of organic aerosol and its components in the megacity of Paris. Atmos. Chem. Phys. 16, 2013–2023 (2016).
    Brito, J. et al. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment. Atmos. Chem. Phys. 14, 12069–12083 (2014).
    Hu, W. W. et al. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements. Atmos. Chem. Phys. 15, 11807–11833 (2015).
    Colon, M., Pleil, J. D., Hartlage, T. A., Guardani, M. L. & Martins, M. H. Survey of volatile organic compounds associated with automative emissions in the urban airshed of Sao Paulo, Brazil. Atmos. Environ. 35, 4017–4031 (2001).
    Nguyen, H. T. H. et al. Atmospheric alcohols and aldehydes concentrations measured in Osaka, Japan and in Sao Paulo, Brazil. Atmos. Environ. 35, 3075–3083 (2001).
    Millet, D. B. et al. Volatile organic compound measurements at Trinidad Head, California, during ITCT 2K2: Analysis of sources, atmospheric composition, and aerosol residence times. J. Geophys. Res. D Atmos. 109, 1–16 (2004).
    Millet, D. B. et al. Chemical characteristics of North American surface layer outflow: Insights from Chebogue Point, Nova Scotia. J. Geophys. Res. Atmos. 111, 1–15 (2006).
    Singh, H. et al. Evidence from the Pacific troposphere for large global sources of oxygenated organic compounds. Nature 410, 1078–1081 (2001).
    Naik, V. et al. Observational constraints on the global atmospheric budget of ethanol. Atmos. Chem. Phys. 10, 5361–5370 (2010).
    Millet, D. B. et al. Atmospheric volatile organic compound measurements during the Pittsburgh Air Quality Study: Results, interpretation, and quantification of primary and secondary contributions. J. Geophys. Res. Atmos. 110, 1–17 (2005).
    Dunmore, R. E. et al. Atmospheric ethanol in London and the potential impacts of future fuel formulations. Faraday Discuss. 189, 105–120 (2016).
    De Gouw, J. A. et al. Increasing atmospheric burden of ethanol in the United States. Geophys. Res. Lett. 39, 1–6 (2012).
    Spracklen, D. V. et al. Aerosol mass spectrometer constraint on the global secondary organic aerosol budget. Atmos. Chem. Phys. 11, 12109–12136 (2011).
    Palm, B. B. et al. Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central Amazonia. Atmos. Chem. Phys. 18, 467–493 (2018).
    Suarez-Bertoa, R. et al. Intercomparison of ethanol, formaldehyde and acetaldehyde measurements from a flex-fuel vehicle exhaust during the WLTC. Fuel 203, 330–340 (2017).
    Inomata, S. & Tanimoto, H. A deuterium-labeling study on the reproduction of hydronium ions in the PTR-MS detection of ethanol. Int. J. Mass Spectrom. 285, 95–99 (2009).
    Crippa, M. et al. Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmos. Chem. Phys. 14, 6159–6176 (2014).
    Pandis, S. N. et al. Urban particulate matter pollution: a tale of five cities. Faraday Discuss. 189, 277–290 (2016).
    Monteiro dos Santos, D. A., Brito, J., Godoy, J. M. & Artaxo, P. Ambient concentrations and insights on organic and elemental carbon dynamics in São Paulo, Brazil. Atmos. Environ. 144, 226–233 (2016).
    Aiken, A. C. et al. O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environ. Sci. Technol. 42, 4478–4485 (2008).
    Salvo, A., Brito, J., Artaxo, P. & Geiger, F. M. Reduced ultrafine particle levels in São Paulo’s atmosphere during shifts from gasoline to ethanol use. Nat. Commun. 8, 77 (2017).
    Pereira, G. M. et al. Particulate pollutants in the Brazilian city of São Paulo: 1-year investigation for the chemical composition and source apportionment. Atmos. Chem. Phys. 17, 11943–11969 (2017).
    Brito, J. et al. Vehicular Emission Ratios of VOCs in a Megacity Impacted by Extensive Ethanol Use: Results of Ambient Measurements in São Paulo, Brazil. Environ. Sci. Technol. 49, 11381–11387 (2015).
    Seinfeld, J. H. & Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change 2nd Edition. 1, (John Wiley & Sons, Inc., 2006).
    Woutersen, R. A., Appelman, L. M., Van Garderen-Hoetmer, A. & Feron, V. J. Inhalation toxicity of acetaldehyde in rats. III. Carcinogenicity study. Toxicology 41, 213–231 (1986).
    Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101 (2000).
    Yanowitz, J., Knoll, K., Kemper, J., Luecke, J. & McCormick, R. L. Impact of adaptation on flex-fuel vehicle emissions when fueled with E40. Environ. Sci. Technol. 47, 2990–2997 (2013).
    Jacobson, M. Z. Effects of Ethanol (E85) versus Gasoline Vehicles on Cancer and Mortality in the United States. Environ. Sci. Technol. 41, 4150–4157 (2007).
    Gaffney, J. S. & Marley, N. A. The impacts of combustion emissions on air quality and climate - From coal to biofuels and beyond. Atmos. Environ. 43, 23–36 (2009).
    Nogueira, T. et al. On-road emissions of carbonyls from vehicles powered by biofuel blends in traffic tunnels in the Metropolitan Area of Sao Paulo, Brazil. Atmos. Environ. 108, 88–97 (2015).
    Dean, B. J. Recent findings on the genetic toxicology of benzene, toluene, xylenes and phenols. Mutat. Res. Genet. Toxicol. 154, 153–181 (1985).
    Li, K., Wang, W., Ge, M., Li, J. & Wang, D. Optical properties of secondary organic aerosols generated by photooxidation of aromatic hydrocarbons. Sci. Rep. 4, 4922 (2015).
    Harrison, R. M., Jones, A. M., Gietl, J., Yin, J. & Green, D. C. Estimation of the Contributions of Brake Dust, Tire Wear, and Resuspension to Nonexhaust Traffic Particles Derived from Atmospheric Measurements. Environ. Sci. Technol. 46, 6523–6529 (2012).
    Gentner, D. R. et al. Review of Urban Secondary Organic Aerosol Formation from Gasoline and Diesel Motor Vehicle Emissions. Environ. Sci. Technol. 51, 1074–1093 (2017).
    Sánchez-Ccoyllo, O. R. et al. Vehicular particulate matter emissions in road tunnels in Sao Paulo, Brazil. Environ. Monit. Assess. 149, 241–249 (2009).
    de Miranda, R. M., Perez-Martinez, P. J., de Fatima Andrade, M. & Ribeiro, F. N. D. Relationship between black carbon (BC) and heavy traffic in São Paulo, Brazil. Transp. Res. Part D Transp. Environ. 1–15, https://doi.org/10.1016/j.trd.2017.09.002 (2017).
    Kumar, P. et al. Ultrafine particles in cities. Environ. Int. 66, 1–10 (2014).
    Choi, H. S. et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat. Biotechnol. 28, 1300–1303 (2010).
    Backman, J. et al. On the diurnal cycle of urban aerosols, black carbon and the occurrence of new particle formation events in springtime São Paulo, Brazil. Atmos. Chem. Phys. 12, 11733–11751 (2012).
    DENATRAN. National Department of Traffic Road (2014).
    Brito, J. & Zahn, A. An unheated permeation device for calibrating atmospheric VOC measurements. Atmos. Meas. Tech. 4, 2143–2152 (2011).
    Seco, R. et al. Volatile organic compounds in the western Mediterranean basin: urban and rural winter measurements during the DAURE campaign. Atmos. Chem. Phys. 13, 4291–4306 (2013).
    Souza, S. R. & Carvalho, L. R. F. Seasonality Influence in the Distribution of Formic and Acetic Acids in the Urban Atmosphere of SÃ\poundso Paulo City, Brazil. J. Braz. Chem. Soc. 12, 755–762 (2001).
    Ng, N. L. et al. An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol. Aerosol Sci. Technol. 45, 780–794 (2011).
    Middlebrook, A. M., Bahreini, R., Jimenez, J. L. & Canagaratna, M. R. Evaluation of Composition-Dependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data. Aerosol Sci. Technol. 46, 258–271 (2012).
    Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R. & Jimenez, J. L. Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmos. Chem. Phys. 9, 2891–2918 (2009).
    CET. Performance of main road system: volume and speed (2013).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020