Exportar registro bibliográfico


Metrics:

Integrated multi-trophic farming system between the green seaweed Ulva lactuca, mussel, and fish: a production and bioremediation solution (2018)

  • Authors:
  • USP affiliated authors: CHIOZZINI, VITOR GONSALEZ - IO ; HO, FANLY FUNGYI CHOW - IB
  • Unidades: IO; IB
  • DOI: 10.1007/s10811-018-1581-4
  • Subjects: ALGAE; ALGICULTURA; BIORREMEDIAÇÃO; NUTRIENTES; EUTROFIZAÇÃO
  • Keywords: Algae; Biomitigation; Bioremediation; Eutrophication; Integrated aquaculture; Sustainable aquaculture
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s10811-018-1581-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      NARDELLI, Allyson E; CHIOZZINI, Vitor G; BRAGA, Elisabete S; CHOW, Fungyi. Integrated multi-trophic farming system between the green seaweed Ulva lactuca, mussel, and fish: a production and bioremediation solution. Journal of Applied Phycology, Dordrecht, 2018. Disponível em: < http://dx.doi.org/10.1007/s10811-018-1581-4 > DOI: 10.1007/s10811-018-1581-4.
    • APA

      Nardelli, A. E., Chiozzini, V. G., Braga, E. S., & Chow, F. (2018). Integrated multi-trophic farming system between the green seaweed Ulva lactuca, mussel, and fish: a production and bioremediation solution. Journal of Applied Phycology. doi:10.1007/s10811-018-1581-4
    • NLM

      Nardelli AE, Chiozzini VG, Braga ES, Chow F. Integrated multi-trophic farming system between the green seaweed Ulva lactuca, mussel, and fish: a production and bioremediation solution [Internet]. Journal of Applied Phycology. 2018 ;Available from: http://dx.doi.org/10.1007/s10811-018-1581-4
    • Vancouver

      Nardelli AE, Chiozzini VG, Braga ES, Chow F. Integrated multi-trophic farming system between the green seaweed Ulva lactuca, mussel, and fish: a production and bioremediation solution [Internet]. Journal of Applied Phycology. 2018 ;Available from: http://dx.doi.org/10.1007/s10811-018-1581-4

    Referências citadas na obra
    Alexander KA, Hughes ADA (2017) A problem shared: technology transfer and development in European integrated multi-trophic aquaculture (IMTA). Aquaculture 473:13–19
    Armstrong FAJ, Williams PM, Strickland JDH (1966) Photo-oxidation of organic matter in sea water by ultraviolet radiation, analytical and application. Nature 5048:481–463
    Armstrong FAJ, Tibbits S (1968) Photochemical combustion of organic matter in sea water for nitrogen, phosphorus and carbon determination. J Mar Biol Assoc UK 48:143–152
    Braga ES (1997a) Determinação automática de nitrato. In: Wagener ARL, Carreira R (eds) Métodos analíticos de referência em Oceanografia Química. Rio de Janeiro, MMA/SMA, 6:27–29
    Braga ES (1997b) Determinação automática de nitrito. In: Wagener ARL, Carreira R (eds) Métodos analíticos de referência em Oceanografia Química. Rio de Janeiro, MMA/SMA, 7:31–35
    Buschmann AH, Varela DA, Hernández-González MC, Huovinen P (2008) Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. J Appl Phycol 20:571–577
    Chopin T, Kerin BF, Mazerolle R (1999) Phycocolloid chemistry as a taxonomic indicator of phylogeny in the Gigartinales, Rhodophyceae: a review and current developments using Fourier transform infrared diffuse reflectance spectroscopy. Phycol Res 47:167–188
    Chopin T, Buschmann AH, Halling C, Troell M, Kautsky N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into aquaculture systems: a key towards sustainability. J Appl Phycol 37:975–986
    Chopin T, Robinson S (2004) Defining the appropriate regulatory and policy framework for the development of integrated multi-trophic aquaculture practices: introduction to the workshop and positioning of the issues. Bull Aquacult Assoc Canada 104:4–10
    Chopin T, Robinson S (2006) Ration for developing integrated multi-trophic aquaculture (IMTA): an example from Canada. Fish Farmer Mag 65:20–21
    Chopin T, Neori A, Buschmann A, Pang S, Sawhney M (2011) Diversification of the aquaculture sector. Seaweed cultivation, integrated multi-trophic aquaculture, integrated sequential biorefineries. Global Aquaculture Advocate 14:58–60
    Chow F, Macchiavello J, Santa Cruz S, Fonck E, Olivares J (2001) Utilization of Gracilaria chilensis (Rhodophyta: Gracilariaceae) as a biofilter in the depuration of effluents from tank cultures of fish, oysters, and sea urchins. J World Aquacult Soc 32:215–220
    Chow F, Pedersén M, Oliveira MC (2013) Modulation of nitrate reductase activity by photosynthetic electron transport chain and nitric oxide balance in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta). J Appl Phycol 25:1847–1853
    Cohen I, Neori A (1991) Ulva lactuca biofilters for marine fishpond effluents. I. Ammonia uptake kinetics and nitrogen content. Bot Mar 34:475–482
    Edwards P, Pullin RSV, Gartner JA (1988) Research and education for the development of integrated crop-livestock-fish farming systems in the tropics. ICLARM Stud Rev 16:1–53
    Ertör I, Ortega-Cerdà M (2015) Political lessons from early warnings: marine finfish aquaculture conflicts in Europe. Mar Policy 51:202–210
    FAO (2016) The state of world fisheries and aquaculture 2016. Contributing to food security and nutrition for all. FAO, Rome
    Grasshoff K, Kremling K, Ehrhardt M (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH, Weinheim
    Haines KC, Wheeler PA (1978) Ammonium and nitrate uptake by the marine macrophytes Hypnea musciformis (Rhodophyta) and Macrocystis pyrifera (Phaeophyta). J Phycol 14:319–324
    Irisarri J, Fernández-Reiriz MJ, Cranford P, Shawn MC (2015) Availability and utilization of waste fish feed by mussels Mytilus edulis in a commercial integrated multi-trophic aquaculture (IMTA) system: a multi-indicator assessment approach. Ecol Indic 48:673–686
    Lee TM, Tsai PF, Shyu YT, Sheu F (2005) The effects of phosphite on phosphate starvation responses of Ulva lactuca (Ulvales, Chlorophyta). J Phycol 41:975–982
    Lignell A, Pedersén NM (1989) Agar composition as a function of morphology and growth rate. Studies on some morphological strains of Gracilaria secundata and Gracilaria verrucosa (Rhodophyta). Bot Mar 32:219–227
    Martínez-Espiñeira R, Chpoin T, Robinson S, Noce A, Knowler D, Yip W (2015) Estimating the biomitigation benefits of integrated multi-trophic aquaculture: a contingent behavior analysis. Aquaculture 437:182–194
    Neori A (1991) Use of seaweed biofilters to increase mariculture intensification and upgrade its effluents. Rev Fish Israel 24:171–179 (in Hebrew)
    Neori A, Krom SP, Ellner CE, Boyd D, Popper R, Rabinovitch PJ, Davison O, Dvir D, Zuber M, Ucko D, Gordin H (1996) Seaweed biofilters as regulators of water quality in integrated fish-seaweed culture units. Aquaculture 141:183–199
    Neori A, Ragg NLC, Shpigel M (1998) The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: II. Performance and nitrogen partitioning within an abalone (Haliotis tuberculata) and macroalgae culture system. Aquac Eng 17:215–239
    Neori A, Shpigel M (1999) Algae treat effluents and feed invertebrates in sustainable integrated mariculture. World Aquac 30:46–51
    Neori A, Shpigel M, Ben-Ezra D (2000) A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186:279–291
    Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shipigel M, Yarish C (2004) Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231:361–391
    Robertson-Andersson DV, Potgieter M, Hansen J, Bolton JJ, Troell M, Anderson RJ, Halling C, Probyn T (2008) Integrated seaweed cultivation on an abalone farm in South Africa. J Appl Phycol 20:579–595
    Ryther JH, Corwin N, Debusk TA, Williams LD (1981) Nitrogen uptake and storage by the red algae Gracilaria tikvahiae McLachlan 1979. Aquaculture 26:107–115
    Saraiva ESBG (2003) Nitrogênio e fósforo totais dissolvidos e suas frações inorgânicas e orgânicas: Considerações sobre a metodologia aplicada e estudo de caso em dois sistemas estuarinos do estado de São Paulo. Thesis, Institute of Oceanography, University of Sao Paulo
    Schuenhoff A, Shpigel M, Lupatsch I, Ashkenazi A, Msuya FE, Neori A (2003) A semirecirculating, integrated system for the culture of fish and seaweed. Aquaculture 221:167–181
    Shpigel M, Neori A (1996) The integrated cultures of seaweed, abalone, fish and clams in modular intensive land-based systems: I. Proportions of size and projected revenues. Aquac Eng 15:313–326
    Tiller R, Brekken T, Bailey J (2012) Norwegian aquaculture expansion and integrated coastal zone management (ICZM): simmering conflicts and competing claims. Mar Policy 36:1086–1095
    Topinka JA (1978) Nitrogen uptake by Fucus spiralis (Phaeophyceae). J Phycol 14:241–247
    Tréguer P, Le Corre P (1975) Manuel d’analysis des sels nutritifs dans l’eau de mer. 2ème éd. Brest, Université de Bretagne Occidentale
    Troell M, Halling C, Neori A, Buschmann AH, Chopin T, Yarish C, Kautsky N (2003) Integrated mariculture: asking the right questions. Aquaculture 226:69–90
    Wang X, Olsen LM, Reitan KI, Olsen Y (2012) Discharge of nutrient wastes from salmon farms: environmental effects, and potential for integrated multi-trophic aquaculture. Aquacult Environ Interact 2:267–283
    Wood ED, Armstrong FA, Richards FA (1967) Determination of nitrate in seawater by cadmium-cooper reduction nitrite. J Mar Biol Ass UK 47:23–31
    Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice-Hall International Editions, New Jersey

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020