Computational geometry applied to develop new metrics of road and edge effects and their performance to understand the distribution of small mammals in an Atlantic forest landscape (2018)
- Authors:
- Autor USP: SILVA, MARCOS MARTINS ALEXANDRINO DA - IME
- Unidade: IME
- DOI: 10.1016/j.ecolmodel.2018.08.004
- Subjects: CÁLCULO DIFERENCIAL E INTEGRAL; GEOMETRIA COMPUTACIONAL
- Keywords: Differential calculus; Edge effect; New software; Road ecology; Tropical forest; Wildlife
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Ecological Modelling
- ISSN: 0304-3800
- Volume/Número/Paginação/Ano: v. 388, p. 24-30, 2018
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
FREITAS, Simone R e CONSTANTINO, Everton e ALEXANDRINO, Marcos Martins. Computational geometry applied to develop new metrics of road and edge effects and their performance to understand the distribution of small mammals in an Atlantic forest landscape. Ecological Modelling, v. 388, p. 24-30, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.ecolmodel.2018.08.004. Acesso em: 17 fev. 2026. -
APA
Freitas, S. R., Constantino, E., & Alexandrino, M. M. (2018). Computational geometry applied to develop new metrics of road and edge effects and their performance to understand the distribution of small mammals in an Atlantic forest landscape. Ecological Modelling, 388, 24-30. doi:10.1016/j.ecolmodel.2018.08.004 -
NLM
Freitas SR, Constantino E, Alexandrino MM. Computational geometry applied to develop new metrics of road and edge effects and their performance to understand the distribution of small mammals in an Atlantic forest landscape [Internet]. Ecological Modelling. 2018 ; 388 24-30.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1016/j.ecolmodel.2018.08.004 -
Vancouver
Freitas SR, Constantino E, Alexandrino MM. Computational geometry applied to develop new metrics of road and edge effects and their performance to understand the distribution of small mammals in an Atlantic forest landscape [Internet]. Ecological Modelling. 2018 ; 388 24-30.[citado 2026 fev. 17 ] Available from: https://doi.org/10.1016/j.ecolmodel.2018.08.004 - Progress in the theory of singular Riemannian foliations
- Lie groups and geometric aspects of isometric actions
- Isometries between leaf spaces
- Mean curvature flow of singular Riemannian foliations
- On singular Finsler foliation
- Singular holonomy of singular Riemannian foliations with sections
- On equifocal Finsler submanifolds and analytic maps
- On closed geodesics in the leaf space of singular riemannian foliations
- Leaf closures of Riemannian foliations: a survey on topological and geometric aspects of Killing foliations
- Polar foliations and isoparametric maps
Informações sobre o DOI: 10.1016/j.ecolmodel.2018.08.004 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2909413.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
