Computational geometry applied to develop new metrics of road and edge effects and their performance to understand the distribution of small mammals in an Atlantic forest landscape (2018)
- Authors:
- Autor USP: SILVA, MARCOS MARTINS ALEXANDRINO DA - IME
- Unidade: IME
- DOI: 10.1016/j.ecolmodel.2018.08.004
- Subjects: CÁLCULO DIFERENCIAL E INTEGRAL; GEOMETRIA COMPUTACIONAL
- Keywords: Differential calculus; Edge effect; New software; Road ecology; Tropical forest; Wildlife
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Ecological Modelling
- ISSN: 0304-3800
- Volume/Número/Paginação/Ano: v. 388, p. 24-30, 2018
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
FREITAS, Simone R e CONSTANTINO, Everton e ALEXANDRINO, Marcos Martins. Computational geometry applied to develop new metrics of road and edge effects and their performance to understand the distribution of small mammals in an Atlantic forest landscape. Ecological Modelling, v. 388, p. 24-30, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.ecolmodel.2018.08.004. Acesso em: 03 jan. 2026. -
APA
Freitas, S. R., Constantino, E., & Alexandrino, M. M. (2018). Computational geometry applied to develop new metrics of road and edge effects and their performance to understand the distribution of small mammals in an Atlantic forest landscape. Ecological Modelling, 388, 24-30. doi:10.1016/j.ecolmodel.2018.08.004 -
NLM
Freitas SR, Constantino E, Alexandrino MM. Computational geometry applied to develop new metrics of road and edge effects and their performance to understand the distribution of small mammals in an Atlantic forest landscape [Internet]. Ecological Modelling. 2018 ; 388 24-30.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.ecolmodel.2018.08.004 -
Vancouver
Freitas SR, Constantino E, Alexandrino MM. Computational geometry applied to develop new metrics of road and edge effects and their performance to understand the distribution of small mammals in an Atlantic forest landscape [Internet]. Ecological Modelling. 2018 ; 388 24-30.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.ecolmodel.2018.08.004 - Smoothness of isometric flows on orbit spaces and applications
- Closure of singular foliations: the proof of Molino’s conjecture
- Leaf closures of Riemannian foliations: a survey on topological and geometric aspects of Killing foliations
- Progress in the theory of singular Riemannian foliations
- Equifocality of a singular Riemannian foliation
- On equifocal Finsler submanifolds and analytic maps
- Desingularization of singular Riemannian foliation
- Polar foliations and isoparametric maps
- Closure of leaves and Lie groupoid structure: the proof of Molino’s conjecture
- Mean curvature flow of singular Riemannian foliations
Informações sobre o DOI: 10.1016/j.ecolmodel.2018.08.004 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2909413.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
