Exportar registro bibliográfico


Differential regulation of polyphosphate genes in Pseudomonas aeruginosa (2016)

  • Authors:
  • Autor USP: SPIRA, BENY - ICB
  • Unidade: ICB
  • DOI: 10.1007/s00438-016-1259-z
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s00438-016-1259-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MUNÉVAR, Nicolás Federico Villamil; ALMEIDA, Luiz Gustavo de; SPIRA, Beny. Differential regulation of polyphosphate genes in Pseudomonas aeruginosa. Molecular Genetics and Genomics, Berlim, Springer-Verlag, v. 1, p. 105-116, 2016. Disponível em: < http://dx.doi.org/10.1007/s00438-016-1259-z > DOI: 10.1007/s00438-016-1259-z.
    • APA

      Munévar, N. F. V., Almeida, L. G. de, & Spira, B. (2016). Differential regulation of polyphosphate genes in Pseudomonas aeruginosa. Molecular Genetics and Genomics, 1, 105-116. doi:10.1007/s00438-016-1259-z
    • NLM

      Munévar NFV, Almeida LG de, Spira B. Differential regulation of polyphosphate genes in Pseudomonas aeruginosa [Internet]. Molecular Genetics and Genomics. 2016 ; 1 105-116.Available from: http://dx.doi.org/10.1007/s00438-016-1259-z
    • Vancouver

      Munévar NFV, Almeida LG de, Spira B. Differential regulation of polyphosphate genes in Pseudomonas aeruginosa [Internet]. Molecular Genetics and Genomics. 2016 ; 1 105-116.Available from: http://dx.doi.org/10.1007/s00438-016-1259-z

    Referências citadas na obra
    Akiyama M, Crooke E, Kornberg A (1993) An exopolyphosphatase of Escherichia coli. The enzyme and its ppx gene in a polyphosphate operon. J Biol Chem 268:633–639
    Azevedo C, Saiardi A (2016) The new world of inorganic polyphosphates. Biochem Soc Trans 44:13–17. doi: 10.1042/BST20150210
    Bains M, Fernández L, Hancock RE (2012) Phosphate starvation promotes swarming motility and cytotoxicity of Pseudomonas aeruginosa. Appl Environ Microbiol 78:6762–6768
    Becher A, Schweizer H (2000) Integration-proficient Pseudomonas aeruginosa vectors for isolation of single-copy chromosomal lacZ and lux gene fusions. Biotechniques 29:948–952
    Chekabab SM, Harel J, Dozois CM (2014) Interplay between genetic regulation of phosphate homeostasis and bacterial virulence. Virulence 5:786–793. doi: 10.4161/viru.29307
    Choi KH, Kumar A, Schweizer HP (2006) A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391–397. doi: 10.1016/j.mimet.2005.06.001
    Darzins A, Chakrabarty A (1984) Cloning of genes controlling alginate biosynthesis from a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa. J Bacteriol 159:9–18
    de Almeida LG, Ortiz JH, Schneider RP, Spira B (2015) phoU inactivation in Pseudomonas aeruginosa enhances accumulation of ppGpp and polyphosphate. Appl Environ Microbiol 81:3006–3015. doi: 10.1128/AEM.04168-14
    Frankenberg N, Kittel T, Hungerer C, Römling U, Jahn D (1998) Cloning, mapping and functional characterization of the hemB gene of Pseudomonas aeruginosa, which encodes a magnesium-dependent 5-aminolevulinic acid dehydratase. Mol Gen Genet 257:485–489
    Gaca AO, Colomer-Winter C, Lemos JA (2015) Many means to a common end: the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis. J Bacteriol 197:1146–1156. doi: 10.1128/JB.02577-14
    Gallarato LA, Sánchez DG, Olvera L, Primo ED, Garrido MN, Beassoni PR, Morett E, Lisa AT (2014) Exopolyphosphatase of Pseudomonas aeruginosa is essential for the production of virulence factors, and its expression is controlled by NtrC and PhoB acting at two interspaced promoters. Microbiology 160:406–417
    Gardner SG, Johns KD, Tanner R, McCleary WR (2014) The PhoU protein from Escherichia coli interacts with PhoR, PstB, and metals to form a phosphate-signaling complex at the membrane. J Bacteriol 196:1741–1752
    Gray MJ, Jakob U (2015) Oxidative stress protection by polyphosphate—new roles for an old player. Curr Opin Microbiol 24:1–6
    Griffith KL, Wolf RE Jr (2002) Measuring $$\beta$$ β -galactosidase activity in bacteria: cell growth, permeabilization, and enzyme assays in 96-well arrays. Biochem Biophys Res Commun 290:397–402
    Gummesson B, Lovmar M, Nyström T (2013) A proximal promoter element required for positive transcriptional control by guanosine tetraphosphate and DksA protein during the stringent response. J Biol Chem 288:21055–21064. doi: 10.1074/jbc.M113.479998
    Hancock R, Poole K, Benz R (1982) Outer membrane protein P of Pseudomonas aeruginosa regulation by phosphate deficiency and formation of small anion-specific channels in lipid bilayer membranes. J Bacteriol 150:730–738
    Hancock R, Raffle V, Nicas T (1981) Involvement of the outer membrane in gentamicin and streptomycin uptake and killing in Pseudomonas aeruginosa. Antimicrob Agents Chemother 19:777–785
    Harold FM (1966) Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol Rev 30:772–794
    Hoang T, Karkhoff-Schweizer R, Kutchma A, Schweizer H (1998) A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86
    Ishige K, Kameda A, Noguchi T, Shiba T (1998) The polyphosphate kinase gene of Pseudomonas aeruginosa. DNA Res 5:157–162
    Jensen V, Löns D, Zaoui C, Bredenbruch F, Meissner A, Dieterich G, Münch R, Häussler S (2006) RhlR expression in Pseudomonas aeruginosa is modulated by the Pseudomonas quinolone signal via PhoB-dependent and -independent pathways. J Bacteriol 188:8601–8606. doi: 10.1128/JB.01378-06
    Kornberg A (1999) Inorganic polyphosphate: a molecule of many functions. Prog Mol Subcell Biol 23:1–18
    Kulaev I, Vagabov V, Kulakovskaya T (2005) The biochemistry of inorganic polyphosphates. Wiley, Chichester
    Kuroda A, Murphy H, Cashel M, Kornberg A (1997) Guanosine tetra- and pentaphosphate promote accumulation of inorganic polyphosphate in Escherichia coli. J Biol Chem 272:21240–21243
    Li Y, Zhang Y (2007) PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia Coli. Antimicrob Agents Chemother 51:2092–2099
    Lubin EA, Henry JT, Fiebig A, Crosson S, Laub MT (2016) Identification of the PhoB regulon and role of PhoU in the phosphate starvation response of Caulobacter crescentus. J Bacteriol 198:187–200. doi: 10.1128/JB.00658-15
    McCleary W (1996) The activation of PhoB by acetylphosphate. Mol Microbiol 20:1155–1163
    McCleary WR, Stock JB (1994) Acetyl phosphate and the activation of two-component response regulators. J Biol Chem 269:31567–31572
    Miller JH (1992) A short course in bacterial genetics: a laboratory manual and handbook for Escherichia coli and related bacteria. Cold Spring Harbor Laboratory Press, Plainview
    Moreno SN, Docampo R (2013) Polyphosphate and its diverse functions in host cells and pathogens. PLoS Pathog 9:e1003230. doi: 10.1371/journal.ppat.1003230
    Morohoshi T, Maruo T, Shirai Y, Kato J, Ikeda T, Takiguchi N, Ohtake H, Kuroda A (2002) Accumulation of inorganic polyphosphate in phoU mutants of Escherichia coli and Synechocystis sp. strain PCC6803. Appl Environ Microbiol 68:4107–4110
    Omelon S, Georgiou J, Habraken W (2016) A cautionary (spectral) tail: red-shifted fluorescence by DAPI-DAPI interactions. Biochem Soc Trans 44:46–49. doi: 10.1042/BST20150231
    Pisani F, Livermore T, Rose G, Chubb JR, Gaspari M, Saiardi A (2014) Analysis of dictyostelium discoideum inositol pyrophosphate metabolism by gel electrophoresis. PLoS One 9:e85533. doi: 10.1371/journal.pone.0085533
    Rahme L, Stevens E, Wolfort S, Shao J, Tompkins R, Ausubel F (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902
    Ramsey DM, Wozniak DJ (2005) Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56:309–322. doi: 10.1111/j.1365-2958.2005.04552.x
    Rao N, Liu S, Kornberg A (1998) Inorganic polyphosphate in Escherichia coli: the phosphate regulon and the stringent response. J Bacteriol 180:2186–2193
    Rao NN, Gómez-García MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647
    Sambrook J, MacCallum P, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
    Shortridge VD, Lazdunski A, Vasil ML (1992) Osmoprotectants and phosphate regulate expression of phospholipase C in Pseudomonas aeruginosa. Mol Microbiol 6:863–871
    Silby M, Nicoll J, Levy S (2009) Requirement of polyphosphate by Pseudomonas fluorescens Pf0-1 for competitive fitness and heat tolerance in laboratory media and sterile soil. Appl Environ Microbiol 75:3872–3881
    Spira B, Aguena M, Castro Oliveira JV, Yagil E (2010) Alternative promoters in the pst operon of Escherichia coli. Mol Genet Genomics 284:489–498
    Spira B, Ferenci T (2008) Alkaline phosphatase as a reporter of sigma(S) levels and rpoS polymorphisms in different E. coli strains. Arch Microbiol 189:43–47. doi: 10.1007/s00203-007-0291-0
    Spira B, Ferreira GM, de Almeida LG (2014) relA enhances the adherence of enteropathogenic Escherichia coli. PLoS One 9:e91703. doi: 10.1371/journal.pone.0091703
    Svitil A, Cashel M, Zyskind J (1993) Guanosine tetraphosphate inhibits protein synthesis in vivo. a possible protective mechanism for starvation stress in Escherichia coli. J Biol Chem 268:2307–2311
    Van Dien SJ, Keasling J (1999) Control of polyphosphate metabolism in genetically engineered Escherichia coli. Enzyme Microb Technol 24:21–25
    van Veen HW, Abee T, Kortstee GJ, Pereira H, Konings WN, Zehnder AJ (1994) Generation of a proton motive force by the excretion of metal-phosphate in the polyphosphate-accumulating Acinetobacter johnsonii strain 210A. J Biol Chem 269:29509–29514
    Wanner BL (1996) Phosphorus assimilation and control of the phosphate regulon. In: Escherichia coli and Salmonella: celular and molecular biology. American Society for Microbiology, p 1357–1381
    Wenner N, Maes A, Cotado-Sampayo M, Lapouge K (2014) NrsZ: a novel, processed, nitrogen-dependent, small non-coding RNA that regulates Pseudomonas aeruginosa PAO1 virulence. Environ Microbiol 16:1053–1068
    Winsor GL, Griffiths EJ, Lo R, Dhillon BK, Shay JA, Brinkman FSL (2016) Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res 44:D646–D653. doi: 10.1093/nar/gkv1227
    Yuan ZC, Zaheer R, Morton R, Finan TM (2006) Genome prediction of PhoB regulated promoters in Sinorhizobium meliloti and twelve proteobacteria. Nucleic Acids Res 34:2686–2697
    Zaborina O, Holbrook C, Chen Y, Long J, Zaborin A, Morozova I, Fernandez H, Wang Y, Turner JR, Alverdy JC (2008) Structure–function aspects of PstS in multi-drug-resistant Pseudomonas aeruginosa. PLoS Pathog 4:e43. doi: 10.1371/journal.ppat.0040043
    Zago A, Chugani S, Chakrabarty A (1999) Cloning and characterization of polyphosphate kinase and exopolyphosphatase genes from Pseudomonas aeruginosa 8830. Appl Environ Microbiol 65:2065–2071
    Zhang H, Ishige K, Kornberg A (2002) A polyphosphate kinase (PPK2) widely conserved in bacteria. Proc Natl Acad Sci USA 99:16678–16683
    Zhang X, Bremer H (1995) Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J Biol Chem 270:11181–11189

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020