Exportar registro bibliográfico


Metrics:

Subtropical hibernation in juvenile tegu lizards (Salvator merianae): insights from intestine redox dynamics (2018)

  • Authors:
  • Autor USP: SOUZA, SILVIA CRISTINA RIBEIRO DE - IB
  • Unidade: IB
  • DOI: 10.1038/s41598-018-27263-x
  • Subjects: HIBERNAÇÃO ANIMAL; DORMÊNCIA (BIOLOGIA); LAGARTOS; METABOLISMO ENERGÉTICO; MUDANÇA CLIMÁTICA; PRIVAÇÃO DE ALIMENTOS; FISIOLOGIA
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41598-018-27263-x (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MOREIRA, Daniel C; WELKER, Alexis F; CAMPOS, Élida G.; SOUZA, Silvia Cristina R. de; HERMES LIMA, Marcelo. Subtropical hibernation in juvenile tegu lizards (Salvator merianae): insights from intestine redox dynamics. Scientific Reports, London, v. 8, p. 1-11, 2018. Disponível em: < http://dx.doi.org/10.1038/s41598-018-27263-x > DOI: 10.1038/s41598-018-27263-x.
    • APA

      Moreira, D. C., Welker, A. F., Campos, É. G., Souza, S. C. R. de, & Hermes Lima, M. (2018). Subtropical hibernation in juvenile tegu lizards (Salvator merianae): insights from intestine redox dynamics. Scientific Reports, 8, 1-11. doi:10.1038/s41598-018-27263-x
    • NLM

      Moreira DC, Welker AF, Campos ÉG, Souza SCR de, Hermes Lima M. Subtropical hibernation in juvenile tegu lizards (Salvator merianae): insights from intestine redox dynamics [Internet]. Scientific Reports. 2018 ; 8 1-11.Available from: http://dx.doi.org/10.1038/s41598-018-27263-x
    • Vancouver

      Moreira DC, Welker AF, Campos ÉG, Souza SCR de, Hermes Lima M. Subtropical hibernation in juvenile tegu lizards (Salvator merianae): insights from intestine redox dynamics [Internet]. Scientific Reports. 2018 ; 8 1-11.Available from: http://dx.doi.org/10.1038/s41598-018-27263-x

    Referências citadas na obra
    Lighton, J. R. B. & Schilman, P. E. Oxygen reperfusion damage in an insect. Plos One 2, e1267 (2007).
    Hermes-Lima, M. et al. Preparation for oxidative stress under hypoxia and metabolic depression: Revisiting the proposal two decades later. Free Radic. Biol. Med. 89, 1122–1143 (2015).
    Storey, K. B. & Storey, J. M. Tribute to P. L. Lutz: putting life on ‘pause’ - molecular regulation of hypometabolism. J. Exp. Biol. 210, 1700–1714 (2007).
    Storey, K. B. & Wu, C.-W. Stress response and adaptation: a new molecular toolkit for the 21st century. Comp. Biochem. Physiol. A 165, 417–428 (2013).
    Storey, K. B. Regulation of hypometabolism: insights into epigenetic controls. J. Exp. Biol. 218, 150–159 (2015).
    Hermes-Lima, M. & Zenteno-Savín, T. Animal response to drastic changes in oxygen availability and physiological oxidative stress. Comp. Biochem. Physiol. C 133, 537–556 (2002).
    Storey, K. B. & Storey, J. M. Aestivation: signaling and hypometabolism. J. Exp. Biol. 215, 1425–1433 (2012).
    Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83, 1153–1181 (2003).
    van Breukelen, F. & Martin, S. L. The hibernation continuum: physiological and molecular aspects of metabolic plasticity in mammals. Physiol. 30, 273–281 (2015).
    Samanta, L. & Paital, B. Effects of seasonal variation on oxidative stress physiology in natural population of toad Bufo melanostictus; clues for analysis of environmental pollution. Environ. Sci. Pollut. Res. 23, 22819–22831 (2016).
    Niu, Y. et al. The levels of oxidative stress and antioxidant capacity in hibernating Nanorana parkeri. Comp. Biochem. Physiol. A 219, 19–27 (2018).
    Zhang, W.-Y., Niu, C.-J., Chen, B. & Yuan, L. Antioxidant responses in hibernating Chinese soft-shelled turtle Pelodiscus sinensis hatchlings. Comp. Biochem. Physiol. A 204, 9–16 (2017).
    Chen, B., Niu, C.-J. & Yuan, L. Ascorbic acid regulation in stress responses during acute cold exposure and following recovery in juvenile Chinese soft-shelled turtle (Pelodiscus sinensis). Comp. Biochem. Physiol. A 184, 20–26 (2015).
    Zhang, W., Niu, C.-J., Liu, Y. & Chen, B. Glutathione redox balance in hibernating Chinese soft-shelled turtle Pelodiscus sinensis hatchlings. Comp. Biochem. Physiol. B 207, 9–14 (2017).
    Feidantsis, K., Anestis, A. & Michaelidis, B. Seasonal variations of anti-/apoptotic and antioxidant proteins in the heart and gastrocnemius muscle of the water frog Pelophylax ridibundus. Cryobiol. 67, 175–183 (2013).
    Bagnyukova, T. V., Storey, K. B. & Lushchak, V. I. Induction of oxidative stress in Rana ridibunda during recovery from winter hibernation. J. Therm. Biol. 28, 21–28 (2003).
    Gavrić, J. et al. Oxidative stress biomarkers, cholinesterase activity and biotransformation enzymes in the liver of dice snake (Natrix tessellata Laurenti) during pre-hibernation and post-hibernation: A possible correlation with heavy metals in the environment. Ecotoxicol. Environ. Saf. 138, 154–162 (2017).
    Prokić, M. D. et al. Oxidative stress parameters in two Pelophylax esculentus complex frogs during pre- and post-hibernation: Arousal vs heavy metals. Comp. Biochem. Physiol. C 202, 19–25 (2017).
    Milsom, W. K. et al. In Living in a Seasonal World. (eds Ruf, T., Bieber, C., Arnold, W. & Millesi, E.) 317–324, https://doi.org/10.1007/978-3-642-28678-0_28 (Springer Berlin Heidelberg, 2012).
    de Souza, S. C. R., Carvalho, J. E., Abe, A. S., Bicudo, J. E. P. W. & Bianconcini, M. S. C. Seasonal metabolic depression, substrate utilisation and changes in scaling patterns during the first year cycle of tegu lizards (Tupinambis merianae). J. Exp. Biol. 207, 307–318 (2004).
    de Andrade, D. V. & Abe, A. Gas exchange and ventilation during dormancy in the tegu lizard Tupinambis merianae. J. Exp. Biol. 202, 3677–3685 (1999).
    Sanders, C. E. et al. Daily and annual cycles in thermoregulatory behaviour and cardio-respiratory physiology of black and white tegu lizards. J. Comp. Physiol. B 185, 905–915 (2015).
    Ruf, T. & Geiser, F. Daily torpor and hibernation in birds and mammals. Biol. Rev. 90, 891–926 (2015).
    Bullard, R. W. & Funkhouser, G. E. Estimated regional blood flow by rubidium 86 distribution during arousal from hibernation. Am. J. Physiol. 203, 266–270 (1962).
    Rolfe, D. F. & Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758 (1997).
    Kurtz, C. C., Lindell, S. L., Mangino, M. J. & Carey, H. V. Hibernation confers resistance to intestinal ischemia-reperfusion injury. Am. J. Physiol. G 291, 895–901 (2006).
    Carey, H. V., Frank, C. L. & Seifert, J. P. Hibernation induces oxidative stress and activation of NK-κB in ground squirrel intestine. J. Comp. Physiol. B 170, 551–559 (2000).
    Carey, H. V., Rhoads, C. A. & Aw, T. Y. Hibernation induces glutathione redox imbalance in ground squirrel intestine. J. Comp. Physiol. B 173, 269–276 (2003).
    do Nascimento, L. F. R. et al. Morphological and metabolic adjustments in the small intestine to energy demands of growth, storage, and fasting in the first annual cycle of a hibernating lizard (Tupinambis merianae). Comp. Biochem. Physiol. A 195, 55–64 (2016).
    Schafer, F. Q. & Buettner, G. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30, 1191–1212 (2001).
    Grundy, J. E. & Storey, K. B. Antioxidant defenses and lipid peroxidation damage in estivating toads. Scaphiopus couchii. J. Comp. Physiol. B 168, 132–142 (1998).
    Jasmine, O. L. Y. A molecular study on some genes known to be related to disuse muscle atrophy in the african lungfish, Protopterus annectens, during three phases of aestivation (National Universisty of Singapore, 2016).
    Ramos-Vasconcelos, G. R. Hypometabolism, antioxidant defenses and free radical metabolism in the pulmonate land snail Helix aspersa. J. Exp. Biol. 206, 675–685 (2003).
    Aon, M. A., Cortassa, S. & O’Rourke, B. Redox-optimized ROS balance: A unifying hypothesis. Biochim. Biophys. Acta 1797, 865–877 (2010).
    Cortassa, S., O’Rourke, B. & Aon, M. A. Redox-Optimized ROS Balance and the relationship between mitochondrial respiration and ROS. Biochim. Biophys. Acta 1837, 287–295 (2014).
    Aw, T. Y. & Rhoads, C. A. Glucose regulation of hydroperoxide metabolism in rat intestinal cells. Stimulation of reduced nicotinamide adenine dinucleotide phosphate supply. J. Clin. Invest. 94, 2426–2434 (1994).
    Wu, G. Intestinal mucosal amino acid catabolism. J. Nutr. 128, 1249–1252 (1998).
    Pascual, P., Pedrajas, J. R., Toribio, F., López-Barea, J. & Peinado, J. Effect of food deprivation on oxidative stress biomarkers in fish (Sparus aurata). Chem. Biol. Interact. 145, 191–199 (2003).
    Leaf, G. & Neyberger, A. The effect of diet on the glutathione content of the liver. Biochem. J. 41, 280–287 (1947).
    Tateishi, N., Higashi, T., Naruse, A., Nakashima, K. & Shiozaki, H. Rat liver glutathione: possible role as a reservoir of cysteine. J. Nutr. 107, 51–60 (1977).
    Lauterburg, B. H., Adams, J. D. & Mitchell, J. R. Hepatic glutathione homeostasis in the rat: efflux accounts for glutathione turnover. Hepatol. 4, 586–590 (1984).
    Benuck, M., Banay-Schwartz, M., DeGuzman, T. & Lajtha, A. Effect of food deprivation on glutathione and amino acid levels in brain and liver of young and aged rats. Brain Res. 678, 259–264 (1995).
    Jaeschke, H. & Wendel, A. Diurnal fluctuation and pharmacological alteration of mouse organ glutathione content. Biochem. Pharmacol. 34, 1029–1033 (1985).
    Igarashi, T., Satoh, T., Ueno, K. & Kitagawa, H. Species difference in glutathione level and glutathione related enzyme activities in rats, mice, guinea pigs and hamsters. J. Pharmacobio-Dyn. 6, 941–949 (1983).
    Domenicali, M. et al. Food deprivation exacerbates mitochondrial oxidative stress in rat liver exposed to ischemia-reperfusion injury. J. Nutr. 131, 105–110 (2001).
    Cho, E. S., Sahyoun, N. & Stegink, L. D. Tissue glutathione as a cyst(e)ine reservoir during fasting and refeeding of rats. J. Nutr. 111, 914–922 (1981).
    Ogasawara, T., Ohnhaus, E. E. & Hoensch, H. P. Glutathione and its related enzymes in the small intestinal mucosa of rats: effects of starvation and diet. Res. Exp. Med. (Berl) 189, 195–204 (1989).
    Kelly, F. J. Glutathione content of the small intestine: regulation and function. Br. J. Nutr. 69, 589–596 (2007).
    Cramp, R. L., Franklin, C. E. & Meyer, E. A. The impact of prolonged fasting during aestivation on the structure of the small intestine in the green-striped burrowing frog. Cyclorana alboguttata. Acta Zool. 86, 13–24 (2005).
    Naya, D. E., Veloso, C., Sabat, P. & Bozinovic, F. The effect of short- and long-term fasting on digestive and metabolic flexibility in the Andean toad, Bufo spinulosus. J. Exp. Biol. 212, 2167–2175 (2009).
    Ames, B. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science 221, 1256–1264 (1983).
    Aw, T. Y. Molecular and cellular responses to oxidative stress and changes in oxidation-reduction imbalance in the intestine. Am. J. Clin. Nutr. 70, 557–565 (1999).
    Andorfer, J. H., Tchaikovskaya, T. & Listowsky, I. Selective expression of glutathione S -transferase genes in the murine gastrointestinal tract in response to dietary organosulfur compounds. Carcinog. 25, 359–367 (2004).
    Clifton, G. & Kaplowitz, N. The glutathione S-transferases of the small intestine in the rat. Cancer Res. 37, 788–791 (1977).
    Dalle-Donne, I., Rossi, R., Giustarini, D., Milzani, A. & Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta 329, 23–38 (2003).
    Davies, K. J. A. Degradation of oxidized proteins by the 20S proteasome. Biochimie 83, 301–310 (2001).
    Velickovska, V., Lloyd, B. P., Qureshi, S. & van Breukelen, F. Proteolysis is depressed during torpor in hibernators at the level of the 20S core protease. J. Comp. Physiol. B 175, 329–335 (2005).
    van Breukelen, F. & Martin, S. L. Translational initiation is uncoupled from elongation at 18 °C during mammalian hibernation. Am. J. Physiol. R 281, 1374–1379 (2001).
    Qiu, X., Brown, K., Hirschey, M. D., Verdin, E. & Chen, D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 12, 662–667 (2010).
    Schull, Q. et al. The oxidative debt of fasting: evidence for short- to medium-term costs of advanced fasting in adult king penguins. J. Exp. Biol. 219, 3284–3293 (2016).
    Zheng, J.-L. et al. Effects of starvation on lipid accumulation and antioxidant response in the right and left lobes of liver in large yellow croaker Pseudosciaena crocea. Ecol. Indic. 66, 269–274 (2016).
    Bayir, A. et al. Metabolic responses to prolonged starvation, food restriction, and refeeding in the brown trout, Salmo trutta: Oxidative stress and antioxidant defenses. Comp. Biochem. Physiol. B 159, 191–196 (2011).
    Niture, S. K., Khatri, R. & Jaiswal, A. K. Regulation of Nrf2-an update. Free Radic. Biol. Med. 66, 36–44 (2014).
    Nakajima, S. & Kitamura, M. Bidirectional regulation of NF-κB by reactive oxygen species: a role of unfolded protein response. Free Radic. Biol. Med. 65, 162–174 (2013).
    Ni, Z. & Storey, K. B. Heme oxygenase expression and Nrf2 signaling during hibernation in ground squirrels. Can. J. Physiol. Pharmacol. 88, 379–387 (2010).
    Morin, P., Ni, Z., McMullen, D. C. & Storey, K. B. Expression of Nrf2 and its downstream gene targets in hibernating 13-lined ground squirrels. Spermophilus tridecemlineatus. Mol. Cell. Biochem. 312, 121–129 (2008).
    Page, M. M. et al. Upregulation of intracellular antioxidant enzymes in brain and heart during estivation in the African lungfish Protopterus dolloi. J. Comp. Physiol. B 180, 361–369 (2010).
    Moreira, D. C., Venancio, L. P. R., Sabino, M. A. C. T. & Hermes-Lima, M. How widespread is preparation for oxidative stress in the animal kingdom? Comp. Biochem. Physiol. A 200, 64–78 (2016).
    Moreira, D. C. et al. Current trends and research challenges regarding “preparation for oxidative stress”. Front. Physiol. 8, 702 (2017).
    Orr, A. L., Lohse, L. A., Drew, K. L. & Hermes-Lima, M. Physiological oxidative stress after arousal from hibernation in Arctic ground squirrel. Comp. Biochem. Physiol. A 153, 213–221 (2009).
    Tattersall, G. J. Reptile thermogenesis and the origins of endothermy. Zoology 119, 403–405 (2016).
    Tattersall, G. J. et al. Seasonal reproductive endothermy in tegu lizards. Sci. Adv. 2, e1500951–e1500951 (2016).
    Hochachka, P. W. & Somero, G. N. Biochemical Adaptation (Oxford University Press, 2002).
    da Silveira, L. C., do Nascimento, L. F. R., Colquhoun, A., Abe, A. S. & de Souza, S. C. R. Cardiac hypertrophy and structural and metabolic remodeling related to seasonal dormancy in the first annual cycle in tegu lizards. Comp. Biochem. Physiol. A 165, 371–380 (2013).
    Welker, A. F., Moreira, D. C. & Hermes-Lima, M. Roles of catalase and glutathione peroxidase in the tolerance of a pulmonate gastropod to anoxia and reoxygenation. J. Comp. Physiol. B 186, 553–568 (2016).
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).
    Hermes-Lima, M., Willmore, W. G. & Storey, K. B. Quantification of lipid peroxidation in tissue extracts based on Fe(III)xylenol orange complex formation. Free Radic. Biol. Med. 19, 271–280 (1995).

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021