Exportar registro bibliográfico


Metrics:

Estimating tomato tolerance to heavy metal toxicity: cadmium as study case (2018)

  • Authors:
  • USP affiliated authors: PIOTTO, FERNANDO ANGELO - ESALQ ; AZEVEDO, RICARDO ANTUNES DE - ESALQ
  • Unidades: ESALQ; ESALQ
  • DOI: 10.1007/s11356-018-2778-4
  • Subjects: CÁDMIO; FITOTOXICIDADE; METAL PESADO DO SOLO; TOMATE
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Informações sobre o DOI: 10.1007/s11356-018-2778-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      PIOTTO, Fernando Angelo; CARVALHO, Marcia Eugenia Amaral; SOUZA, Lucas Anjos; et al. Estimating tomato tolerance to heavy metal toxicity: cadmium as study case. Environmental Science and Pollution Research, Heidelberg, Springer Nature, v. 25, n. 27, p. 27535-27544, 2018. Disponível em: < http://dx.doi.org/10.1007/s11356-018-2778-4 > DOI: 10.1007/s11356-018-2778-4.
    • APA

      Piotto, F. A., Carvalho, M. E. A., Souza, L. A., Rabêlo, F. H. S., Franco, M. R., Batagin-Piotto, K. D., & Azevedo, R. A. (2018). Estimating tomato tolerance to heavy metal toxicity: cadmium as study case. Environmental Science and Pollution Research, 25( 27), 27535-27544. doi:10.1007/s11356-018-2778-4
    • NLM

      Piotto FA, Carvalho MEA, Souza LA, Rabêlo FHS, Franco MR, Batagin-Piotto KD, Azevedo RA. Estimating tomato tolerance to heavy metal toxicity: cadmium as study case [Internet]. Environmental Science and Pollution Research. 2018 ; 25( 27): 27535-27544.Available from: http://dx.doi.org/10.1007/s11356-018-2778-4
    • Vancouver

      Piotto FA, Carvalho MEA, Souza LA, Rabêlo FHS, Franco MR, Batagin-Piotto KD, Azevedo RA. Estimating tomato tolerance to heavy metal toxicity: cadmium as study case [Internet]. Environmental Science and Pollution Research. 2018 ; 25( 27): 27535-27544.Available from: http://dx.doi.org/10.1007/s11356-018-2778-4

    Referências citadas na obra
    Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723
    Alves LA, Monteiro CC, Carvalho RF, Ribeiro PC, Tezotto T, Azevedo RA, Gratão PL (2017) Cadmium stress related to root-to-shoot communication depends on ethylene and auxin in tomato plants. Environ Exp Bot 134:102–115
    Bækgaard L, Mikkelsen MD, Sørensen DM, Hegelund JN, Persson DP, Mills RF, Yang Z, Husted S, Andersen JP, Buch-Pedersen MJ, Schjoerring JK, Williams LE, Palmgren MG (2010) A combined zinc/cadmium sensor and zinc/cadmium export regulator in a heavy metal pump. J Biol Chem 285:31243–31252
    Bayçu G, Rognes SE, Özden H, Gören-Saglam N, Csatári I, Szabó S (2017) Abiotic stress effects on the antioxidative response profile of Albizia julibrissin Durazz. (Fabaceae). Braz J Bot 40:21–32
    Bergougnoux V (2014) The history of tomato: from domestication to biopharming. Biotechnol Adv 32:170–189
    Bernard F, Dumez S, Lemière S, Platel A, Nesslany F, Deram A, Vandenbulcke F, Cuny D (2018) Impact of cadmium on forage kale (Brassica oleracea var. viridis cv “Prover”) after 3-, 10- and 56-day exposure to a Cd-spiked field soil. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-018-1636-8
    Borges KLR, Salvato F, Alcântara BK, Nalin RS, Piotto FA, Azevedo RA (2018) Temporal dynamic responses of roots in contrasting tomatogenotypes to cadmium tolerance. Ecotoxicology 27:245–258
    Branco-Neves S, Soares C, Sousa A, Martins V, Azenha M, Gerós H, Fidalgo F (2017) An efficient antioxidant system and heavy metal exclusion from leaves make Solanum cheesmaniae more tolerant to Cu than its cultivated counterpart. Food Energy Secur 6:123–133
    Brkic I, Simic D, Zdunic Z, Jambrovic A, Ledencan T, Kovacevic V, Kadar I (2004) Genotypic variability of micronutrient element concentrations in maize kernels. Cereal Res Commun 32:107–112
    Carvalho FP (2017) Mining industry and sustainable development: time for change. Food Energy Secur 6:61–77
    Carvalho MEA, Piotto FA, Nogueira ML, Gomes-Junior FG, Chamma HMCP, Pizzaia D, Azevedo RA (2018a) Cadmium exposure triggers genotype-dependent changes in seed vigor and germination of tomato offspring. Protoplasma 255:989–999. https://doi.org/10.1007/s00709-018-1210-8
    Carvalho MEA, Piotto FA, Gaziola SA, Jacomino AP, Jozefczak M, Cuypers A, Azevedo RA (2018b) New insights about cadmium impacts on tomato: plant acclimation, nutritional changes, fruit quality and yield. Food Energy Secur 7:e00131. https://doi.org/10.1002/fes3.131
    Cherif J, Derbel N, Nakkach M, Bergmann H, Jemal F, Lakhdar ZB (2012) Spectroscopic studies of photosynthetic responses of tomato plants to the interaction of zinc and cadmium toxicity. J Photochem Photobiol B 111:9–16
    Chou T-S, Chao Y-Y, Huang W-D, Hong C-Y, Kao C-H (2011) Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. J Plant Physiol 168:1021–1030
    Cuypers A, Hendrix S, Reis RA, Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E (2016) Hydrogen peroxide, signaling in disguise during metal phytotoxicity. Front Plant Sci 7:470
    Delpérée C, Lutts S (2008) Growth inhibition occurs independently of cell mortality in tomato (Solanum lycopersicum) exposed to high cadmium concentrations. J Integr Plant Biol 50:300–310
    Dong J, Wu F, Zhang G (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64:1659–1666
    Dourado MN, Martins PF, Quecine MC, Piotto FA, Souza LA, Franco MR, Tezotto T, Azevedo RA (2013) Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato. Ann Appl Biol 163:494–507
    Fidalgo F, Freitas R, Ferreira R, Pessoa AM, Teixeira J (2011) Solanum nigrum L. antioxidant defence system isozymes are regulated transcriptionally and posttranslationally in Cd-induced stress. Environ Exp Bot 72:312–319
    Gao L, Chang J, Chen R, Li H, Lu H, Tao L, Xiong J (2016) Comparison on cellular mechanisms of iron and cadmium accumulation in rice: prospects for cultivating Fe-rich but Cd-free rice. Rice 9:39
    Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann Appl Biol 153:321–333
    Gratão PL, Monteiro CC, Tezotto T, Carvalho RF, Alves LR, Peters LP, Azevedo RA (2015) Cadmium stress antioxidant responses and root-to-shoot communication in grafted tomato plants. Biometals 28:803–816
    Gratão PL, Monteiro CC, Carvalho RF, Tezotto T, Piotto FA, Peres LEP, Azevedo RA (2012) Biochemical dissection of diageotropica and Never ripe tomato mutants to Cd-stressful conditions. Plant Physiol Biochem 56:79–96
    Hermans C, Chen J, Coppens F, Inzé D, Verbruggen N (2011) Low magnesium status in plants enhances tolerance to cadmium exposure. New Phytol 192:428–436
    Hippler FWR, Petená G, Boaretto RM, Quaggio JA, Azevedo RA, Mattos-Jr D (2018) Mechanisms of copper stress alleviation in Citrus trees after metal uptake by leaves or roots. Environ Sci Pollut Res 25:13134–13146
    Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agriculture Station, Berkeley
    Iannone MF, Groppa MD, Benavides MP (2015) Cadmium induces different biochemical responses in wild type and catalase-deficient-tobacco plants. Environ Exp Bot 109:20–211
    Kabata-Pendias A (2011) Cadmium. In: Kabata-Pendias A (ed) Trace elements in soils and plants. CRC Press, Boca Raton, pp 287–304
    Khan A, Khan S, Alam M, Khan MA, Aamir M, Qamar Z, Rehman ZU, Perveen S (2016) Toxic metal interactions affect the bioaccumulation and dietary intake of macro- and micro-nutrients. Chemosphere 146:121–128
    Kovacevic V, Vragolovic A (2011) Genotype and environmental effects on cadmium concentration in maize. J Life Sci 5:926–932
    Kovacevic V, Antunovic M, Bukvic G, Rastija M, Kadar I (2004) Soil and genotype influences on heavy metals status in maize. Ekol Bratislava 23:65–60
    Kudo H, Kudo K, Uemura M, Kawai S (2015) Magnesium inhibits cadmium translocation from roots to shoots, rather than the uptake from roots, in barley. Botany 93:345–351
    Marschner P (2012) Marschner’s mineral nutrition of higher plants. Academic Press, San Diego
    Melo LCA, Alleoni LRF, Carvalho G, Azevedo RA (2011) Cadmium and barium toxicity effects on growth and antioxidant capacity of soybean (Glycine max L.) plants, grown in two soil types with different physicochemical properties. J Plant Nutr Soil Sci 174:847–859
    Méndez AAE, Pena LB, Benavides MP, Gallego SM (2016) Priming with NO controls redox state and prevents cadmium-induced general up-regulation of methionine sulfoxide reductase gene family in Arabidopsis. Biochimie 131:128–136
    Nogueirol RC, Monteiro FA, Gratão PL, Silva BKA, Azevedo RA (2016) Cadmium application in tomato: nutritional imbalance and oxidative stress. Water Air Soil Pollut 227:210
    Norton GJ, Travis AJ, Danku JMC, Salt DE, Hossain M, Islam MR, Price AH (2017) Biomass and elemental concentrations of 22 rice cultivars grown under alternate wetting and drying conditions at three field sites in Bangladesh. Food Energy Secur 6:98–112
    Piotto FA, Tulmann Neto A, Franco MR, Boaretto LF, Azevedo RA (2014) Rapid screening for selection heavy metals tolerant plants. Crop Breed Appl Biotechnol 14:1–7
    Pompeu GB, Vilhena MB, Gratão PL, Carvalho RF, Rossi ML, Martinelli AP, Azevedo RA (2017) Abscisic acid-deficient sit tomato mutant responses to cadmium-induced stress. Protoplasma 254:771–783
    R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
    Rizwan M, Ali S, Qayyum MF, Ok YS, Zia-Ur-Rehman M, Abbas Z, Hannan F (2017) Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ Geochem Health 39:259–277
    Science Communication Unit (2013) Science for environment policy in-depth report: soil contamination: impacts on human health. Report produced for the European Commission DG Environment, 2013. Retrieved from http://ec.europa.eu/science-environment-policy
    Sebastian A, Prasad MNV (2016) Modulatory role of mineral nutrients on cadmium accumulation and stress tolerance in Oryza sativa L. seedlings. Environ Sci Pollut Res 23:1224–1233
    Sharmila P, Kumari PK, Singh K, Prasad NVSRK, Pardha-Saradhi P (2017) Cadmium toxicity-induced proline accumulation is coupled to iron depletion. Protoplasma 254:763–770
    Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143
    Souza LA, Monteiro CC, Carvalho RF, Gratão PL, Azevedo RA (2017) Dealing with abiotic stresses: an integrative view of how phytohormones control abiotic stress-induced oxidative stress. Theor Exp Plant Physiol 29:109–127
    Souza LA, Camargos LS, Carvalho MEA (2018) Toxic metal phytoremediation using high biomass non-hyperaccumulator crops: new possibilities for bioenergy resources. In: Matichenkov V (ed) Phytoremediation: methods, management, assessment. Nova Science, New York, pp 1–25
    Teklić T, Loncaric Z, Kovacevic V, Singh BR (2013) Metallic trace elements in cereal grain – a review: how much metal do we eat? Food Energy Secur 2:81–95
    The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641
    Visual MINTEQ ver 3.0 (n.d.) Disponible at: www2.lwr.kth.se/English/OurSoftware/vminteq
    Weast RC (1984) Handbook of chemistry and physics, 64th edn. CRC Press, Boca Raton
    Zheng J, Gu XQ, Zhang TJ, Liu HH, Ou QJ, Peng CL (2018) Phytotoxic effects of Cu, Cd and Zn on the seagrass Thalassia hemprichii and metal accumulation in plants growing in Xincun Bay, Hainan, China. Ecotoxicology 27:517–526. https://doi.org/10.1007/s10646-018-1924-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020