Exportar registro bibliográfico


Metrics:

Biomass burning CCN enhance the dynamics of a mesoscale convective system over the La Plata Basin: a numerical approach (2018)

  • Authors:
  • Autor USP: DIAS, MARIA ASSUNCAO FAUS DA SILVA - IAG
  • Unidade: IAG
  • DOI: 10.5194/acp-18-2081-2018
  • Subjects: BIOMASSA; METEOROLOGIA DE MESO-ESCALA; AEROSSOL; BACIA DO PRATA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.5194/acp-18-2081-2018 (Fonte: oaDOI API)
    • Este periódico é de acesso aberto
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: gold
    • Licença: cc-by

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      CAMPONOGARA, Gláuber; DIAS, Maria Assunção Faus da Silva; CARRIÓ, Gustavo G. Biomass burning CCN enhance the dynamics of a mesoscale convective system over the La Plata Basin: a numerical approach. Atmospheric Chemistry and Physics, Gottingen, v. 18, n. 3, p. 2081-2096, 2018. Disponível em: < https://doi.org/10.5194/acp-18-2081-2018 > DOI: 10.5194/acp-18-2081-2018.
    • APA

      Camponogara, G., Dias, M. A. F. da S., & Carrió, G. G. (2018). Biomass burning CCN enhance the dynamics of a mesoscale convective system over the La Plata Basin: a numerical approach. Atmospheric Chemistry and Physics, 18( 3), 2081-2096. doi:10.5194/acp-18-2081-2018
    • NLM

      Camponogara G, Dias MAF da S, Carrió GG. Biomass burning CCN enhance the dynamics of a mesoscale convective system over the La Plata Basin: a numerical approach [Internet]. Atmospheric Chemistry and Physics. 2018 ; 18( 3): 2081-2096.Available from: https://doi.org/10.5194/acp-18-2081-2018
    • Vancouver

      Camponogara G, Dias MAF da S, Carrió GG. Biomass burning CCN enhance the dynamics of a mesoscale convective system over the La Plata Basin: a numerical approach [Internet]. Atmospheric Chemistry and Physics. 2018 ; 18( 3): 2081-2096.Available from: https://doi.org/10.5194/acp-18-2081-2018

    Referências citadas na obra
    Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989.
    Albrecht, R. I., Goodman, S. J., Buechler, D. E., Blakeslee, R. J., and Christian, H. J.: Where are the lightning hotspots on Earth?, B. Am. Meteorol. Soc., 97, 2051–2068, https://doi.org/10.1175/BAMS-D-14-00193.1, 2016.
    Andreae, M. O., Rosenfeld, D., Artaxo, P., Costa, A. A., Frank, G. P., Longo, K. M., and Silva Dias, M. A. F.: Smoking rain clouds over the Amazon, Science, 303, 1337–1342, 2004.
    Artaxo, P., Rizzo, L. V., Brito, J. F., Barbosa, H. M. J., Arana, A., Sena, E. T., Cirino, G. G., Bastos, W., Martin, S. T., and Andreae, M. O.: Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions, Faraday Discuss., 165, 203–235, 2013.
    Camponogara, G., Silva Dias, M. A. F., and Carrió, G. G.: Relationship between Amazon biomass burning aerosols and rainfall over the La Plata Basin, Atmos. Chem. Phys., 14, 4397–4407, https://doi.org/10.5194/acp-14-4397-2014, 2014.
    Carrió, G. G. and Cotton, W. R.: Urban growth and aerosol effects on convection over Houston. Part II: Dependence of aerosol effects on instability, Atmos. Res., 102, 167–174, 2011.
    Carrió, G. G., Cotton, W. R., and Cheng, W. Y. Y.: Urban growth and aerosol effects on convection over Houston: Part I: The August 2000 case, Atmos. Res., 96, 560–574, 2010.
    Carrió, G. G., Cotton, W. R., and Loftus, A. M.: On the response of hailstorms to enhanced CCN concentrations, Atmos. Res., 143, 342–350, 2014.
    Chen, C. and Cotton, W. R.: The physics of the marine stratocumulus-capped mixed layer, J. Atmos. Sci., 44, 2951–2977, 1987.
    Chen, Y., Weng, F., Han, Y., and Liu, Q.: Validation of the community radiative transfer model by using CloudSat data, J. Geophys. Res., 113, D00A03, https://doi.org/10.1029/2007JD009561, 2008.
    Churchill, D. D. and Houze, R. A.: Development and structure of winter monsoon cloud clusters on 10 December 1978, J. Atmos. Sci., 41, 933–960, 1984.
    Clavner, M., Grasso, L. D., Cotton, W. R., and van den Heever, S. C.: The response of a simulated mesoscale convective system to increased aerosol pollution: Part II: Derecho characteristics and intensity in response to increased pollution, Atmos. Res., 199, 209–223, 2017.
    Conforte, J. C.: Um estudo de complexos convectivos de mesoescala sobre a América do Sul, PhD thesis, Instituto Nacional de Pesquisas Espaciais (INPE), 112, São José dos Campos, 1997.
    Cotton, W. R. and Anthes, R. A.: Storm and Cloud Dynamics, International Geophysical Series, 44, 883 pp., Academic press, 1989.
    Cotton, W. R., Pielke, R. A., Walko, R. L., Liston, G. E., Tremback, C. J., Jiang, H., McAnelly, R. L., Harrington, J. Y., Nicholls, M. E., Carrió, G. G., and Mcfadden, J. P.: RAMS 2001: current status and future directions, Meteorol. Atmos. Phys., 82, 5–29, 2003.
    CPTEC/INPE (Centro de Previsão do Tempo e Estudos Climáticos of Instituto Nacional de Pesquisas Espaciais): BRAMS's input data, available at: http://brams.cptec.inpe.br (last access: 15 October 2016), 2012a.
    CPTEC/INPE (Centro de Previsão do Tempo e Estudos Climáticos of Instituto Nacional de Pesquisas Espaciais): BRAMS model, available at: http://brams.cptec.inpe.br (last access: 20 May 2015), 2012b.
    Durkee, J. D. and Mote, T. L.: A climatology of warm-season mesoscale convective complexes in subtropical South America, Int. J. Climatol., 30, 418–431, 2010.
    Eck, T. F., Holben, B. N., Slutsker, I., and Setzer, A.: Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for biomass burning, J. Geophys. Res., 103, 31–865, 1998.
    Fan, J., Zhang, R., Li, G., and Tao, W.-K.: Effects of aerosols and relative humidity on cumulus clouds, J. Geophys. Res.-Atmos., 112, D14204, https://doi.org/10.1029/2006JD008136, 2007.
    Fan, J., Yuan, T., Comstock, J. M., Ghan, S., Khain, A., Leung, L. R., Li, Z., Martins, V. J., and Ovchinnikov, M.: Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds, J. Geophys. Res.-Atmos., 114, D22206, https://doi.org/10.1029/2009JD012352, 2009.
    Fan, J., Rosenfeld, D., Ding, Y., Leung, L. R., and Li, Z.: Potential aerosol indirect effects on atmospheric circulation and radiative forcing through deep convection, Geophys. Res. Lett., 39, L09806, https://doi.org/10.1029/2012GL051851, 2012.
    Feng, Z., Dong, X., Xi, B., Schumacher, C., Minnis, P., and Khaiyer, M.: Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems, J. Geophys. Res.-Atmos., 116, D23202, https://doi.org/10.1029/2011JD016451, 2011.
    Freitas, S. R., Longo, K. M., Silva Dias, M. A. F., Silva Dias, P. L., Chatfield, R., Prins, E., Artaxo, P., Grell, G. A., and Recuero, F. S.: Monitoring the transport of biomass burning emissions in South America, Environ. Fluid Mech., 5, 135–167, 2005.
    Freitas, S. R., Panetta, J., Longo, K. M., Rodrigues, L. F., Moreira, D. S., Rosário, N. E., Silva Dias, P. L., Silva Dias, M. A. F., Souza, E. P., Freitas, E. D., Longo, M., Frassoni, A., Fazenda, A. L., Santos e Silva, C. M., Pavani, C. A. B., Eiras, D., França, D. A., Massaru, D., Silva, F. B., Santos, F. C., Pereira, G., Camponogara, G., Ferrada, G. A., Campos Velho, H. F., Menezes, I., Freire, J. L., Alonso, M. F., Gácita, M. S., Zarzur, M., Fonseca, R. M., Lima, R. S., Siqueira, R. A., Braz, R., Tomita, S., Oliveira, V., and Martins, L. D.: The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): an integrated environmental model tuned for tropical areas, Geosci. Model Dev., 10, 189–222, https://doi.org/10.5194/gmd-10-189-2017, 2017.
    Fritsch, J. M. and Forbes, G. S.: Mesoscale convective systems, severe convective storms, Meteor. Mon., 28, 323–356, 2001.
    Gonçalves, W. A., Machado, L. A. T., and Kirstetter, P.-E.: Influence of biomass aerosol on precipitation over the Central Amazon: an observational study, Atmos. Chem. Phys., 15, 6789–6800, https://doi.org/10.5194/acp-15-6789-2015, 2015.
    Grell, G. A.: Prognostic evaluation of assumptions used by cumulus parameterizations, Mon. Weather Rev., 121, 764–787, 1993.
    Hobbs, P. V., Politovich, M. K., and Radke, L. F.: The structures of summer convective clouds in eastern Montana. I: Natural clouds, J. Appl. Meteorol., 19, 645–663, 1980.
    Khain, A., Rosenfeld, D., and Pokrovsky, A.: Aerosol impact on the dynamics and microphysics of deep convective clouds, Q. J. Roy. Meteor. Soc., 131, 2639–2663, 2005.
    Klemp, J. B. and Wilhelmson, R. B.: The simulation of three-dimensional convective storm dynamics, J. Atmos. Sci., 35, 1070–1096, 1978.
    Koren, I., Kaufman, Y. J., Remer, L. A., and Martins, J. V.: Measurement of the effect of Amazon smoke on inhibition of cloud formation, Science, 303, 1342–1345, 2004.
    Koren, I., Martins, J. V., Remer, L. A., and Afargan, H.: Smoke invigoration versus inhibition of clouds over the Amazon, Science, 321, 946–949, 2008.
    Lang, S., Tao, W. K., Simpson, J., and Ferrier, B.: Modeling of convective–stratiform precipitation processes: Sensitivity to partitioning methods, J. Appl. Meteorol., 42, 505–527, 2003.
    Lebo, Z. J. and Morrison, H.: Dynamical effects of aerosol perturbations on simulated idealized squall lines, Mon. Weather Rev., 142, 991–1009, 2014.
    Li, G., Wang, Y., Lee, K., Diao, Y., and Zhang, R.: Impacts of aerosols on the development and precipitation of a mesoscale squall line, J. Geophys. Res.-Atmos., 114, D17205, https://doi.org/10.1029/2008JD011581, 2009.
    Lin, Y., Wang, Y., Pan, B., Hu, J., Liu, Y., and Zhang, R.: Distinct impacts of aerosols on an evolving continental cloud complex during the RACORO field campaign, J. Atmos. Sci., 73, 3681–3700, 2016.
    Maddox, R. A.: Meoscale convective complexes, B. Am. Meteorol. Soc., 61, 1374–1387, 1980.
    Mahrer, Y. and Pielke, R. A.: A numerical study of the airflow over irregular terrain, Beiträge zur Physik der Atmosphäre, 50, 98–103, 1977.
    Marinescu, P. J., van den Heever, S. C., Saleeby, S. M., and Kreidenweis, S. M.: The microphysical contributions to and evolution of latent heating profiles in two MC3E MCSs, J. Geophys. Res.-Atmos., 121, 7913–7935, 2016.
    Martin, S. T., Andreae, M. O., Artaxo, P., Baumgardner, D., Chen, Q., Goldstein, A. H., Guenther, A., Heald, C. L, Mayol-Bracero, O. L., McMurry, P. H., Pauliquevis, T., Pöschl, U., Prather, K. A., Roberts, G. C., Saleska, S. R., Silva Dias, M. A. F., Spracklen, D. V., Swietlicki, E., and Trebs, I.: Sources and properties of Amazonian aerosol particles, Rev. Geophys., 48, RG2002 https://doi.org/10.1029/2008RG000280, 2010.
    Martins, J. A., Silva Dias, M. A. F., and Gonçalves, F. L. T.: Impact of biomass burning aerosols on precipitation in the Amazon: A modeling case study, J. Geophys. Res., 114, D02207, https://doi.org/10.1029/2007JD009587, 2009.
    Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for geophysical fluid problems, Rev. Geophys., 20, 851–875, 1982.
    Meyers, M. P., Walko, R. L., Harrington, J. Y., and Cotton, W. R: New RAMS cloud microphysics parameterization. Part II: The two-moment scheme, Atmos. Res., 45, 3–39, 1997.
    Morton, D. C., Defries, R. S., Randerson, J. T., Giglio, L., Schroeder, W., and Van Der Werf, G. R.: Agricultural intensification increases deforestation fire activity in Amazonia, Glob. Change Biol., 14, 2262–2275, 2008.
    NCEP (National Centers for Environmental Prediction): NCEP Climate Forecast System Reanalysis (CFSR), available at: 10.5065/D69K487J (last access: 5 October 2016), 2012.
    Nesbitt, S. W., Cifelli, R., and Rutledge, S. A.: Storm morphology and rainfall characteristics of TRMM precipitation features, Mon. Weather Rev., 134, 2702–2721, 2006.
    Reinhardt, T. E., Ottmar, R. D., and Castilla, C.: Smoke impacts from agricultural burning in a rural Brazilian town, J. Air Waste Manage., 51, 443–450, 2001.
    Rosenfeld, D.: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall, Geophys. Res. Lett., 26, 3105–3108, 1999.
    Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M. O.: Flood or drought: how do aerosols affect precipitation?, Science, 321, 1309–1313, 2008.
    Rotunno, R., Klemp, J. B., and Weisman, M. L.: A theory for strong, long-lived squall lines, J. Atmos. Sci., 45, 463–485, 1988.
    Saleeby, S. M. and Cotton, W. R.: Simulations of the North American monsoon system. Part I: Model Analysis of the 1993 monsoon season, J. Climate, 17, 1997–2018, 2004.
    Saleeby, S. M. and Cotton, W. R.: A binned approach to cloud-droplet riming implemented in a bulk microphysics model, J. Appl. Meteorol. Clim., 47, 694–703, 2008.
    Saleeby, S. M., van den Heever, S. C., Marinescu, P. J., Kreidenweis, S. M., and DeMott, P. J.: Aerosol effects on the anvil characteristics of mesoscale convective systems, J. Geophys. Res.-Atmos., 121, 10880–10901, 2016.
    Salio, P., Nicolini, M., and Zipser, E. J.: Mesoscale convective systems over southeastern South America and their relationship with the South American Low Level Jet, Mon. Weather Rev., 135, 1290–1309, 2007.
    Seigel, R. B. and van den Heever, S. C.: Squall-line intensification via hydrometeor recirculation, J. Atmos. Sci., 70, 2012–2031, 2013.
    Silva Dias, M. A. F., Rozante, J. R., and Machado, L. A. T.: Complexos Convectivos de Mesoescala na América do Sul, Tempo e Clima no Brasil, Oficina de Textos, São Paulo, 181–194, 2009.
    Tao, W. K., Li, X., Khain, A., Matsui, T., Lang, S., and Simpson, J.: Role of atmospheric aerosol concentration on deep convective precipitation: Cloud- resolving model simulations, J. Geophys. Res., 112, D24S18, https://doi.org/10.1029/2007JD008728, 2007.
    Tao, W. K., Chen, J. P., Li, Z., Wang, C., and Zhang, C.: Impact of aerosols on convective clouds and precipitation, Rev. Geophys., 50, RG2001, https://doi.org/10.1029/2011RG000369, 2012.
    Torres, J. C. and Nicolini, M.: A composite mesoscale convective systems over southern South America and its relationship to low-level jet events, in: Conference on South American Low-Level Jet, CD-ROM, Santa Cruz de la Serra, 2002.
    Tremback, C. J.: Numerical simulation of a mesoscale convective complex: model development and numerical results, PhD thesis, CSU, Atmos. Sci., Fort Collins, 247, 1990.
    Tripoli, G. J. and Cotton, W. R.: The Colorado State University three- dimensional cloud mesoscale model – 1982. Part I: General theoretical framework and sensitivity, J. Res. Atmos., 16, 185–220, 1982.
    Twomey, S.: Pollution and the planetary albedo, Atmos. Environ., 8, 1251–1256, 1974.
    van den Heever, S. C., Carrió, G. G., Cotton, W. R., DeMott, P. J., and Prenni, A. J.: Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations, J. Atmos. Sci., 63, 1752–1775, 2006.
    Velasco, I. and Fritsch, J. M.: Mesoscale convective complexes in the Americas, J. Geophys. Res., 92, 9591–9613, 1987.
    Vera, C., Baez, J., Douglas, M., Emmanuel, C. B., Marengo, J., Meitin, J., Nicolini, M., Nogues-Paegle, J., Paegle, J., Penalba, O., Salio, P., Saulo, C., Silva Dias, M. A. F., Silva Dias, P., and Zipser, E. J.: The South American Low-Level Jet experiment, B. Am. Meteorol. Soc., 87, 63–77, 2006.
    Walko, R. L., Cotton, W. R., Meyers, M. P., and Harrington, J. Y.: New RAMS cloud microphysics parameterization part I: The single-moment scheme, Atmos. Res., 38, 29–62, 1995.
    Wall, C. L.: The impact of aerosols on convective clouds: a global perspective, PhD thesis, The University of Utah, Salt Lake City, 2013.
    Wang, Y., Wan, Q., Meng, W., Liao, F., Tan, H., and Zhang, R.: Long-term impacts of aerosols on precipitation and lightning over the Pearl River Delta megacity area in China, Atmos. Chem. Phys., 11, 12421–12436, https://doi.org/10.5194/acp-11-12421-2011, 2011.
    Wang, Y., Lee, K., Lin, Y., Levy, M., and Zhang, R.: Distinct effects of anthropogenic aerosols on tropical cyclones, Nat. Clim. Change, 4, 368–373, 2014.
    Williams, E., Rosenfeld, D., Madden, N., Gerlach, J., Gears, N., Atkinson, L., Dunnemann, N., Frostrom, G., Antonio, M., Biazon, B., Camargo, R., Franca, H., Gomes, A., Lima, M., Machado, R., Manhaes, S., Nachtigall, L., Piva, H., Quintiliano, W., Machado, L., Artaxo, P., Roberts, G., Renno, N., Blakeslee, R., Bailey, J., Boccippio, D., Betts, A., Wolff, D., Roy, B., Halverson, J., Rickenbach, T., Fuentes, J., and Avelino, E.: Contrasting convective regimes over the Amazon: Implications for cloud electrification, J. Geophys. Res.-Atmos., 107, 8082, https://doi.org/10.1029/2001JD000380, 2002.
    Zhou, C., Zhang, X., Gong, S., Wang, Y., and Xue, M.: Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system, Atmos. Chem. Phys., 16, 145–160, https://doi.org/10.5194/acp-16-145-2016, 2016.
    Zipser, E. J., Cecil, D. J., Liu, C., Nesbitt, S. W., and Yorty, D. P.: Where are the most intense thunderstorms on Earth?, B. Am. Meteorol. Soc., 87, 1057–1072, 2006.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021