Oscillation by impulses for a second-order delay differential equation (2006)
- Authors:
- Autor USP: FEDERSON, MÁRCIA CRISTINA ANDERSON BRAZ - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.camwa.2006.06.001
- Subjects: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO; EQUAÇÕES DIFERENCIAIS PARCIAIS DE 2ª ORDEM; EQUAÇÕES DIFERENCIAIS PARCIAIS NÃO LINEARES
- Keywords: Delay differential equations; Second-order; Nonlinear; Oscillation; Impulses
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Kidlington
- Date published: 2006
- Source:
- Título: Computers and Mathematics with Applications
- ISSN: 0898-1221
- Volume/Número/Paginação/Ano: v. 52, v. 6-7, p. 819-828, Sep.-Oct. 2006
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
GIMENES, Luciene Parron e FEDERSON, Marcia. Oscillation by impulses for a second-order delay differential equation. Computers and Mathematics with Applications, v. 6-7, p. Se-Oct. 2006, 2006Tradução . . Disponível em: https://doi.org/10.1016/j.camwa.2006.06.001. Acesso em: 03 jan. 2026. -
APA
Gimenes, L. P., & Federson, M. (2006). Oscillation by impulses for a second-order delay differential equation. Computers and Mathematics with Applications, 6-7, Se-Oct. 2006. doi:10.1016/j.camwa.2006.06.001 -
NLM
Gimenes LP, Federson M. Oscillation by impulses for a second-order delay differential equation [Internet]. Computers and Mathematics with Applications. 2006 ; 6-7 Se-Oct. 2006.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.camwa.2006.06.001 -
Vancouver
Gimenes LP, Federson M. Oscillation by impulses for a second-order delay differential equation [Internet]. Computers and Mathematics with Applications. 2006 ; 6-7 Se-Oct. 2006.[citado 2026 jan. 03 ] Available from: https://doi.org/10.1016/j.camwa.2006.06.001 - A new continuous dependence result for impulsive retarded functional differential equations
- Theory of oscillations for functional differential equations with implulses
- Prolongation of solutions of measure differential equations and dynamic equations on time scales
- Stability for measure neutral functional differential equations
- Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems
- Measure functional differential equations and functional dynamic equations on time scales
- Oscillation for a second-order neutral differential equation with impulses
- Converse Lyapunov theorems for retarded functionl differential equations
- Topologic conjugation and asymptotic stability in impulsive semidynamical systems
- Discontinuous local semiflows for Kurzweil equations leading to Lasalle's invariance principle for differential systems with impulses at variable times
Informações sobre o DOI: 10.1016/j.camwa.2006.06.001 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
