Exportar registro bibliográfico


Metrics:

CARS-PLS regression and ATR-FTIR spectroscopy for eco-friendly and fast composition analyses of LDPE/HDPE blends (2018)

  • Authors:
  • Autor USP: WIEBECK, HÉLIO - EP
  • Unidade: EP
  • DOI: doi.org/10.1007/s10965-018-1507-5
  • Subjects: POLÍMEROS (MATERIAIS); BLENDAS
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: doi.org/10.1007/s10965-018-1507-5 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      SILVA, Daniel José da; WIEBECK, Hélio. CARS-PLS regression and ATR-FTIR spectroscopy for eco-friendly and fast composition analyses of LDPE/HDPE blends. Journal of Polymer Research, Netherlands, Springer, v. 25, p. 112-1-9, 2018. Disponível em: < https://doi.org/10.1007/s10965-018-1507-5 > DOI: doi.org/10.1007/s10965-018-1507-5.
    • APA

      Silva, D. J. da, & Wiebeck, H. (2018). CARS-PLS regression and ATR-FTIR spectroscopy for eco-friendly and fast composition analyses of LDPE/HDPE blends. Journal of Polymer Research, 25, 112-1-9. doi:doi.org/10.1007/s10965-018-1507-5
    • NLM

      Silva DJ da, Wiebeck H. CARS-PLS regression and ATR-FTIR spectroscopy for eco-friendly and fast composition analyses of LDPE/HDPE blends [Internet]. Journal of Polymer Research. 2018 ;25 112-1-9.Available from: https://doi.org/10.1007/s10965-018-1507-5
    • Vancouver

      Silva DJ da, Wiebeck H. CARS-PLS regression and ATR-FTIR spectroscopy for eco-friendly and fast composition analyses of LDPE/HDPE blends [Internet]. Journal of Polymer Research. 2018 ;25 112-1-9.Available from: https://doi.org/10.1007/s10965-018-1507-5

    Referências citadas na obra
    Gulmine JV, Janissek PR, Heise HM, Akcelrud L (2002) Polyethylene characterization by FTIR. Polym Test 21:557–563. https://doi.org/10.1016/S0142-9418(01)00124-6
    Achilias D (2012) Material recycling-trends and perspectives. https://doi.org/10.5772/2003
    Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643. https://doi.org/10.1016/j.wasman.2009.06.004
    Fu Q, Men Y, Strobl G (2003) Understanding of the tensile deformation in HDPE/LDPE blends based on their crystal structure and phase morphology. Polymer (Guildf) 44:1927–1933. https://doi.org/10.1016/S0032-3861(02)00940-0
    Al-Salem SM, Lettieri P, Baeyens J (2010) The valorization of plastic solid waste (PSW) by primary to quaternary routes: from re-use to energy and chemicals. Prog Energy Combust Sci 36:103–129. https://doi.org/10.1016/j.pecs.2009.09.001
    ABIPLAST (2016) Perfil 2016 da Indústria Brasileira de Transformação de Material Plástico
    Pereira RA, Mano EB, Dias ML, Acordi EB (1997) Comparative study on the lamellar crystal structure of high and low density polyethylenes. Polym Bull 38:707–714. https://doi.org/10.1007/s002890050109
    Onyon PF (1972) Textbook of polymer science. Polymer (Guildf) 13:597. https://doi.org/10.1016/0032-3861(72)90126-7
    Bhunia K, Sablani SS, Tang J, Rasco B (2013) Migration of chemical compounds from packaging polymers during microwave, conventional heat treatment, and storage. Compr Rev Food Sci Food Saf 12:523–545. https://doi.org/10.1111/1541-4337.12028
    Coutinho FMB, Mello IL, de Santa Maria LC (2003) Polietileno: principais tipos, propriedades e aplicações. Polímeros 13:1–13. https://doi.org/10.1590/S0104-14282003000100005
    Munaro M, Akcelrud L (2008) Correlations between composition and crystallinity of LDPE/HDPE blends. J Polym Res 15:83–88. https://doi.org/10.1007/s10965-007-9146-2
    Perna G, Lasalvia M, Capozzi V (2016) Vibrational spectroscopy of synthetic and natural eumelanin. Polym Int 65:1323–1330. https://doi.org/10.1002/pi.5182
    Ferrão MF, Viera MDS, Pazos REP et al (2011) Simultaneous determination of quality parameters of biodiesel/diesel blends using HATR-FTIR spectra and PLS, iPLS or siPLS regressions. Fuel 90:701–706. https://doi.org/10.1016/j.fuel.2010.09.016
    Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130. https://doi.org/10.1016/S0169-7439(01)00155-1
    Rocha JTC, Oliveira LMSL, Dias JCM, Pinto UB, Marques MLSP, Oliveira BP, Filgueiras PR, Castro EVR, de Oliveira MAL (2016) Sulfur determination in Brazilian petroleum fractions by mid-infrared and near-infrared spectroscopy and partial least squares associated with variable selection methods. Energy Fuel 30:698–705. https://doi.org/10.1021/acs.energyfuels.5b02463
    Mehmood T, Liland KH, Snipen L, Sæbø S (2012) A review of variable selection methods in partial least squares regression. Chemom Intell Lab Syst 118:62–69. https://doi.org/10.1016/j.chemolab.2012.07.010
    Li H, Liang Y, Xu Q, Cao D (2009) Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal Chim Acta 648:77–84. https://doi.org/10.1016/j.aca.2009.06.046
    Savitzky A, Golay MJE (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36:1627–1639. https://doi.org/10.1021/ac60214a047
    Li H, Xu Q, Liang Y (2014) libPLS: an integrated library for partial least squares regression and discriminant analysis. PeerJ Prepr 2:e190v1. https://doi.org/10.7287/peerj.preprints.190v1
    da Silva DJ, Wiebeck H (2017) Using PLS, iPLS and siPLS linear regressions to determine the composition of LDPE/HDPE blends: a comparison between confocal Raman and ATR-FTIR spectroscopies. Vib Spectrosc 92:259–266. https://doi.org/10.1016/j.vibspec.2017.08.009
    Kaci M, Sadoun T, Cimmino S (2001) Crystallinity measurements of Unstabilized and HALS-stabilized LDPE films exposed to natural weathering by FT-IR, DSC and WAXS analyses. Int J Polym Anal Charact 6:455–464. https://doi.org/10.1080/10236660108033961
    Abdmouleh M, Jedidi I, Khitouni M, Ben Salah A, Kabadou A (2011) LDPE phase composition in LDPE/cu composites using thermal analysis and FTIR spectroscopy. J Appl Spectrosc 78:174–182. https://doi.org/10.1007/s10812-011-9443-8
    Luijsterburg B, Goossens H (2014) Assessment of plastic packaging waste: material origin, methods, properties. Resour Conserv Recycl 85:88–97. https://doi.org/10.1016/j.resconrec.2013.10.010
    Caro E, Comas E (2017) Polyethylene comonomer characterization by using FTIR and a multivariate classification technique. Talanta 163:48–53. https://doi.org/10.1016/j.talanta.2016.10.082
    Babaghayou MI, Mourad A-HI, Lorenzo V, de la Orden MU, Martínez Urreaga J, Chabira SF, Sebaa M (2016) Photodegradation characterization and heterogeneity evaluation of the exposed and unexposed faces of stabilized and unstabilized LDPE films. Mater Des 111:279–290. https://doi.org/10.1016/j.matdes.2016.08.065
    van den Berg RA, Hoefsloot HC, Westerhuis JA et al (2006) Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7:1–15. https://doi.org/10.1186/1471-2164-7-142
    Rosipal R (2011) Nonlinear partial least squares an overview. In: Lodhi H, Yamanishi Y (eds) Chemoinformatics Adv. Mach. Learn. Perspect. IGI Global, pp 169–189
    Hagemann H, Snyder RG, Peacock AJ, Mandelkern L (1989) Quantitative infrared methods for the measurement of crystallinity and its temperature dependence: polyethylene. Macromolecules 22:3600–3606. https://doi.org/10.1021/ma00199a017

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021