Exportar registro bibliográfico


Assessing the roles of Rho GTPases in cell DNA repair by the nucleotide excision repair pathway (2018)

  • Authors:
  • USP affiliated authors: FORTI, FÁBIO LUÍS - IQ
  • Unidades: IQ
  • DOI: 10.1007/978-1-4939-8612-5_22
  • Language: Inglês
  • Imprenta:
  • Source:
  • Informações sobre o DOI: 10.1007/978-1-4939-8612-5_22 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      RUSSO, Lilian Cristina; MINAYA, Pault Yeison; SILVA, Luiz Eduardo da; FORTI, Fabio Luis. Assessing the roles of Rho GTPases in cell DNA repair by the nucleotide excision repair pathway. In: Rho GTPases: Methods and Protocols[S.l: s.n.], 2018. DOI: 10.1007/978-1-4939-8612-5_22.
    • APA

      Russo, L. C., Minaya, P. Y., Silva, L. E. da, & Forti, F. L. (2018). Assessing the roles of Rho GTPases in cell DNA repair by the nucleotide excision repair pathway. In Rho GTPases: Methods and Protocols. New York: Humana Press. doi:10.1007/978-1-4939-8612-5_22
    • NLM

      Russo LC, Minaya PY, Silva LE da, Forti FL. Assessing the roles of Rho GTPases in cell DNA repair by the nucleotide excision repair pathway. In: Rho GTPases: Methods and Protocols. New York: Humana Press; 2018.
    • Vancouver

      Russo LC, Minaya PY, Silva LE da, Forti FL. Assessing the roles of Rho GTPases in cell DNA repair by the nucleotide excision repair pathway. In: Rho GTPases: Methods and Protocols. New York: Humana Press; 2018.

    Referências citadas na obra
    Karlsson R, Pedersen ED, Wang Z, Brakebusch C (2009) Rho GTPase function in tumorigenesis. Biochim Biophys Acta 1796:91–98
    Anna B, Blazej Z, Jacqueline G, Andrew CJ, Jeffrey R, Andrzej S (2007) Mechanism of UV-related carcinogenesis and its contribution to nevi/melanoma. Expert Rev Dermatol 2:451–469
    Aladowicz E, Ferro L, Vitali GC, Venditti E, Fornasari L, Lanfrancone L (2013) Molecular networks in melanoma invasion and metastasis. Future Oncol 9:713–726
    Eom YW, Yoo MH, Woo CH, Hwang KC, Song WK, Yoo YJ, Chun JS, Kim JH (2001) Implication of the small GTPase Rac1 in the apoptosis induced by UV in Rat-2 fibroblasts. Biochem Biophys Res Commun 285:825–829
    Fritz G, Kaina B (1997) rhoB encoding a UV-inducible Ras-related small GTP-binding protein is regulated by GTPases of the Rho family and independent of JNK, ERK, and p38 MAP kinase. J Biol Chem 272:30637–30644
    Jiang Q, Zhou C, Healey S, Chu W, Kouttab N, Bi Z, Wan Y (2006) UV radiation down-regulates Dsg-2 via Rac/NADPH oxidase-mediated generation of ROS in human lens epithelial cells. Int J Mol Med 18:381–387
    Seo M, Cho CH, Lee YI, Shin EY, Park D, Bae CD, Lee JW, Lee ES, Juhnn YS (2004) (2004) Cdc42-dependent mediation of UV-induced p38 activation by G protein βγ subunits. J Biol Chem 279:17366–17375
    Ascer LG, Magalhaes YT, Espinha G, Osaki JH, Souza RC, Forti FL (2015) CDC42 GTPase activation affects HeLa cell DNA repair and proliferation following UV radiation-induced genotoxic stress. J Cell Biochem 116:2086–2097
    Espinha G, Osaki JH, Costa ET, Forti FL (2016) Inhibition of the RhoA GTPase activity increases sensitivity of melanoma cells to UV radiation effects. Oxidative Med Cell Longev 2016:2696952
    Espinha G, Osaki JH, Magalhaes YT, Forti FL (2015) Rac1 GTPase-deficient HeLa cells present reduced DNA repair, proliferation, and survival under UV or gamma irradiation. Mol Cell Biochem 404:281–297
    Glorian V, Maillot G, Poles S, Iacovoni JS, Favre G, Vagner S (2011) HuR-dependent loading of miRNA RISC to the mRNA encoding the Ras-related small GTPase RhoB controls its translation during UV-induced apoptosis. Cell Death Differ 18:1692–1701
    Ho H, Aruri J, Kapadia R, Mehr H, White MA, Ganesan AK (2012) RhoJ regulates melanoma chemoresistance by suppressing pathways that sense DNA damage. Cancer Res 72:5516–5528
    Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R, Lacal JC (1997) Activation of the nuclear factor-κB by Rho, CDC42, and Rac-1 proteins. Genes Dev 11:463–475
    Wang WQ, Wu JF, Xiao XQ, Xiao Q, Wang J, Zuo FG (2013) Narrow-band UVB radiation promotes dendrite formation by activating Rac1 in B16 melanoma cells. Mol Clin Oncol 1:858–862
    Vanni C, Ottaviano C, Guo F, Puppo M, Varesio L, Zheng Y, Eva A (2005) Constitutively active Cdc42 mutant confers growth disadvantage in cell transformation. Cell Cycle 4:1675–1682
    de Lima-Bessa KM, Armelini MG, Chigancas V, Jacysyn JF, Amarante-Mendes GP, Sarasin A, Menck CF (2008) CPDs and 6–4PPs play different roles in UV-induced cell death in normal and NER-deficient human cells. DNA Repair 7:303–312
    Latimer JJ (2014) Analysis of activity transcribed DNA repair using a transfection based system. Methods Mol Biol 1105:533–550
    Osaki JH, Espinha G, Magalhaes YT, Forti FL (2016) Modulation of RhoA GTPase activity sensitizes human cervix carcinoma cells to gamma-radiation by attenuating DNA repair pathways. Oxidative Med Cell Longev 2016:6012642
    Holcomb N, Goswami M, Han SG, Clark S, Orren DK, Gairola CG, Mellon I (2016) Exposure of human lung cells to tobacco smoke condensate inhibits the nucleotide excision repair pathway. PLoS One 11:e0158858
    Holcomb N, Goswami M, Han SG, Scott T, D'Orazio J, Orren DK, Gairola CG, Mellon I (2017) Inorganic arsenic inhibits the nucleotide excision repair pathway and reduces the expression of XPC. DNA Repair 52:70–80
    Paul-Konietzko K, Thomale J, Arakawa H, Iliakis G (2015) DNA ligases I and III support nucleotide excision repair in DT40 cells with similar efficiency. Photochem Photobiol 91:1173–1180
    Protic-Sabljic M, Kraemer KH (1985) One pyrimidine dimer inactivates expression of a transfected gene in xeroderma pigmentosum cells. Proc Natl Acad Sci U S A 82:6622–6626
    Garen A, Zinder ND (1995) Radiological evidence for partial genetic homology between bacteriophage and host bacteria. Virology 1:347–376
    Athas WF, Hedayati MA, Matanoski GM, Farmer ER, Grossman L (1991) Development and field-test validation of an assay for DNA repair in circulating human lymphocytes. Cancer Res 51:5786–5793
    Burger K, Matt K, Kieser N, Gebhard D, Bergemann J (2010) A modified fluorimetric host cell reactivation assay to determine the repair capacity of primary keratinocytes, melanocytes and fibroblasts. BMC Biotechnol 10:46
    Roguev A, Russev G (2000) Two-wavelength fluorescence assay for DNA repair. Anal Biochem 287:313–318
    Matijasevic Z, Precopio ML, Snyder JE, Ludlum DB (2001) Repair of sulfur mustard-induced DNA damage in mammalian cells measured by a host cell reactivation assay. Carcinogenesis 22:661–664
    Yen L, Woo A, Christopoulopoulos G, Batist G, Panasci L, Roy R, Mitra S, Alaoui-Jamali MA (1995) Enhanced host cell reactivation capacity and expression of DNA repair genes in human breast cancer cells resistant to bi-functional alkylating agents. Mutat Res 337:179–189
    Chao CC, Lee YL, Cheng PW, Lin-Chao S (1991) Enhanced host cell reactivation of damaged plasmid DNA in HeLa cells resistant to cis-diamminedichloroplatinum(II). Cancer Res 51:601–605
    Dabholkar M, Reed E (1992) Host cell reactivation of cisplatin-damaged plasmid DNA in human non-T leukocyte cell lines. Cancer Lett 63:143–150
    Méndez P, Tarón M, Morán T, Fernández MA, Requena G, Rosell R (2011) A modified host-cell reactivation assay to quantify DNA repair capacity in cryopreserved peripheral lymphocytes. DNA Repair 10:603–610
    Sheibani N, Jennerwein MM, Eastman A (1989) DNA repair in cells sensitive and resistant to cis-diamminedichloroplatinum(II): host cell reactivation of damaged plasmid DNA. Biochemistry 28:3120–3124

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020