Exportar registro bibliográfico


Antileishmanial activity of the Antarctic red algae Iridaea cordata (Gigartinaceae; Rhodophyta) (2019)

  • Authors:
  • Unidades: FCFRP; IQ
  • DOI: 10.1007/s10811-018-1592-1
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Conference titles: Redealgas Workshop - Biotechnology and Sustainability
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s10811-018-1592-1 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      RANGEL, Karen C; DEBONSI, Hosana Maria; CLEMENTINO, Leandro C; et al. Antileishmanial activity of the Antarctic red algae Iridaea cordata (Gigartinaceae; Rhodophyta). Journal of Applied Phycology[S.l: s.n.], 2019.Disponível em: DOI: 10.1007/s10811-018-1592-1.
    • APA

      Rangel, K. C., Debonsi, H. M., Clementino, L. C., Graminha, M. A. S., Vilela, L. Z., Colepicolo, P., & Gaspar, L. R. (2019). Antileishmanial activity of the Antarctic red algae Iridaea cordata (Gigartinaceae; Rhodophyta). Journal of Applied Phycology. Dordrecht. doi:10.1007/s10811-018-1592-1
    • NLM

      Rangel KC, Debonsi HM, Clementino LC, Graminha MAS, Vilela LZ, Colepicolo P, Gaspar LR. Antileishmanial activity of the Antarctic red algae Iridaea cordata (Gigartinaceae; Rhodophyta) [Internet]. Journal of Applied Phycology. 2019 ; 31( 2): 825-834.Available from: http://dx.doi.org/10.1007/s10811-018-1592-1
    • Vancouver

      Rangel KC, Debonsi HM, Clementino LC, Graminha MAS, Vilela LZ, Colepicolo P, Gaspar LR. Antileishmanial activity of the Antarctic red algae Iridaea cordata (Gigartinaceae; Rhodophyta) [Internet]. Journal of Applied Phycology. 2019 ; 31( 2): 825-834.Available from: http://dx.doi.org/10.1007/s10811-018-1592-1

    Referências citadas na obra
    Aissa I, Sghair RM, Bouaziz M, Laouini D, Sayadi S, Gargouri Y (2012) Synthesis of lipophilic tyrosyl esters derivatives and assessment of their antimicrobial and antileishmania activities. Lipids Health Dis 11:13
    Álvarez G, Perdomo C, Coronel C, Aguilera E, Varela J, Aparicio G, Zolessi FR, Cabrera N, Vega C, Rolón M, Rojas de Arias A, Pérez-Montfort R, Cerecetto H, González M (2017) Multi-anti-parasitic activity of arylidene ketones and thiazolidene hydrazines against Trypanosoma cruzi and Leishmania spp. Molecules 22:E709
    Becerra M, Boutefnouchet S, Córdoba O, Vitorino GP, Brehu L, Lamour I, Laimay F, Efstathiou A, Smirlis D, Michel S, Kritsanida M, Flores ML, Grougnet R (2015) Antileishmanial activity of fucosterol recovered from Lessonia vadosa Searles (Lessoniaceae) by SFE, PSE and CPC. Phytochem Lett 11:418–423
    Borsari C, Santarem N, Torrado J, Olías AI, Corral MJ, Baptista C, Gul S, Wolf M, Kuzikov M, Ellinger B, Witt G, Gribbon P, Reinshagen J, Linciano P, Tait A, Costantino L, Freitas-Junior LH, Moraes CB, Bruno Dos Santos P, Alcântara LM, Franco CH, Bertolacini CD, Fontana V, Tejera Nevado P, Clos J, Alunda JM, Cordeiro-da-Silva A, Ferrari S, Costi MP (2017) Methoxylated 2′-hydroxychalcones as antiparasitic hit compounds. Eur J Med Chem 126:1129–1135
    Boylston TD, Viniyard BT (1998) Isolation of volatile flavor compounds from peanut butter using purge-and-trap technique. In: Wetzel, DLB, Charalambous, G (eds), Developments in Food Science, vol 39. Elsevier, Heidelberg, pp 225–243
    CDC Centers for Disease Control and Prevention (2018) Neglected tropical diseases. https://www.cdc.gov/globalhealth/ntd/index.html
    Chawla B, Madhubala R (2010) Drug targets in Leishmania. J Parasit Dis 34:1–13
    Chen CY (2004) Biosynthesis of di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP) from red alga, Bangia atropurpurea. Water Res 38:1014–1018
    Coqueiro A, Regasini LO, Leme GM, Polese L, Nogueira CT, Del Cistia ML, Graminha MAS, Bolzani VS (2014) Leishmanicidal activity of Brosimum glaziovii (Moraceae) and chemical composition of the bioactive fractions by using high-resolution gas chromatography and GC-MS. J Braz Chem Soc 25:1839–1847
    De Felício R, De Albuquerque S, Young MCM, Yokoya NS, Debonsi HM (2010) Trypanocidal, leishmanicidal and antifungal potential from marine red alga Bostrychia tenella J. Agardh (Rhodomelaceae, Ceramiales). J Pharm Biomed Anal 52:763–769
    De Sousa CB, Gangadhar KN, Morais TR, Conserva GA, Vizetto-Duarte C, Pereira H, Laurenti MD, Campino L, Levy D, Uemi M, Barreira L, Custódio L, Passero LF, Lago JH, Varela J (2017) Antileishmanial activity of meroditerpenoids from the macroalgae Cystoseira baccata. Exp Parasit 174:1–9
    Dias DA, Urban S, Roessner U (2012) Historical overview of natural products in drug discovery. Metabolites 2:303–336
    Dorlo TP, Balasegaram M, Beijnen JH, De Vries PJ (2012) Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother 67:2576–2597
    Dos Santos AO, Veiga-Santos P, Ueda-Nakamura T, Filho BP, Sudatti DB, Bianco EM, Pereira RC, Nakamura CV (2010) Effect of elatol, isolated from red seaweed Laurencia dendroidea, on Leishmania amazonensis. Mar Drugs 8:2733–2743
    Dos Santos AO, Britta EA, Bianco EM, Ueda-Nakamura T, Filho BP, Pereira RC, Nakamura CV (2011) 4-Acetoxydolastane diterpene from the Brazilian brown alga Canistrocarpus cervicornis as antileishmanial agent. Mar Drugs 9:2369–2383
    Dos Santos VA, Leite KM, da Costa Siqueira M, Regasini LO, Martinez I, Nogueira CT, Galuppo MK, Stolf BS, Pereira AM, Cicarelli RM, Furlan M, Graminha MA (2013) Antiprotozoal activity of quinonemethide triterpenes from Maytenus ilicifolia (Celastraceae). Molecules 18:1053–1062
    Drugbank (2018) Amphotericin B. http://www.drugbank.ca/drugs/DB00681
    Flaherty DP, Harris MT, Schroeder CE, Khan H, Kahney EW, Hackler AL, Patrick SL, Weiner WS, Aubé J, Sharlow ER, Morris JC, Golden JE (2017) Optimization and evaluation of antiparasitic benzamidobenzoic acids as inhibitors of kinetoplastid hexokinase 1. ChemMedChem 12:1994–2005
    Florey K (1977) Profiles of drug substances, excipients and related methodology, vol 6. Academic Press, New York, p 3
    Funari CS, Almeida L, Passalacqua TG, Martinez I, Ambrósio DL, Cicarellim AMB, Silva DHS, Graminha MAS (2016) Oleanonic acid from Lippia lupulina (Verbenaceae) shows strong in vitro antileishmanial and antitrypanosomal activity. Acta Amaz 46:411–416
    Gressler V, Stein EM, Dörr F, Fujii MT, Colepicolo P, Pinto E (2011) Sesquiterpenes from the essential oil of Laurencia dendroidea (Ceramiales, Rhodophyta): isolation, biological activities and distribution among seaweeds. Rev Bras Farmacogn 21:248–254
    Hansen JE, Doyle WT (1976) Ecology and natural history of Iridaea cordata (Rhodophyta; Gigartinaceae): population structure. J Phycol 12:273–278
    ICCVAM Interagency Coordinating Committee on the Validation of Alternative Methods (2006) Recommended test method protocol BALB/c 3T3 NRU cytotoxicity test method. Available at: http://iccvam.niehs.nih.gov/methods/acutetox/inv_nru_tmer.htm (last accessed March 4th 2018)
    Jolliffe EA, Tregunna EB (1970) Studies on HCO3 ion uptake during photosynthesis in benthic marine algae. Phycologia 9:293–303
    Kabara JJ, Swieczkowski DM, Conley AJ, Truant JP (1972) Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 2:23–28
    Kevric I, Cappel MA, Keeling JH (2015) New world and old world Leishmania infections: a practical review. Dermatol Clin 33:579–593
    Kilic A, Kollmannsberger H, Nitz S (2005) Glycosidically bound volatiles and flavor precursors in Laurus nobilis L. J Agric Food Chem 53:2231–2235
    Kim HJ, Jung Kim W, Koo B-W, Kim D-W, Hyuck Lee J, Nugroho W (2016) Anticancer activity of sulfated polysaccharides isolated from the Antarctic red seaweed Iridaea cordata. Ocean Polar Res 38:129–137
    Macintyre F, Adoke Y, Tiono AB, Duong TT, Mombo-Ngoma G, Bouyou-Akotet M, Tinto H, Bassat Q, Issifou S, Adamy M, Demarest H, Duparc S, Leroy D, Laurijssens BE, Biguenet S, Kibuuka A, Tshefu AK, Smith M, Foster C, Leipoldt I, Kremsner PG, Phuc BQ, Ouedraogo A, Ramharter M (2017) A randomised, double-blind clinical phase II trial of the efficacy, safety, tolerability and pharmacokinetics of a single dose combination treatment with artefenomel and piperaquine in adults and children with uncomplicated Plasmodium falciparum malaria. BMC Med 15:181
    McCarthy JS, Baker M, O'Rourke P, Marquart L, Griffin P, Van Huijsduijnen RH, Jörg J, Möhrle JJ (2016) Efficacy of OZ439 (artefenomel) against early Plasmodium falciparum blood-stage malaria infection in healthy volunteers. J Antimicrob Chemother 71:2620–2627
    Nadaf M, Halimi M, Mortazavi M (2012) Identification of nonpolar chemical composition Spartium junceum flower growing in Iran by GC-MS. Middle-East J Sci Res 11:221–224
    Namikoshi M, Fujiwara T, Nishikawa T, Ukai K (2006) Natural abundance 14C content of dibutyl phthalate (DBP) from three marine algae. Mar Drugs 4:290–297
    Navarro NP, Mansilla A, Plastino EM (2010) Iridaea cordata (Gigartinales, Rhodophyta): responses to artificial UVB radiation. J Appl Phycol 22:385–394
    Newman JD, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661
    NIH National Institutes of Health (2001) Standard operating procedure (SOP) for the BALB/c 3T3 neutral red uptake cytotoxicity test - a test for basal cytotoxicity. Appendix C. Available at: https://ntp.niehs.nih.gov/iccvam/docs/acutetox_docs/guidance0801/appc2.pdf (last accessed March 4th 2018)
    NIST 08 (2008). Mass spectral library (NIST/EPA/NIH). National Institute of Standards and Technology, Gaithersburg, USA
    OECD Organization for Economic Co-operation and Development (2001a) OECD guidelines for the testing of chemicals test no. 425: acute oral toxicity- up-and-down procedure. https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd_gl425-508.pdf
    OECD Organization for Economic Co-operation and Development (2001b) OECD guidelines for the testing of chemicals test no. 423: acute oral toxicity – acute toxic class method. Available at: https://ntp.niehs.nih.gov/iccvam/suppdocs/feddocs/oecd/oecd_gl423.pdf (last accessed March 4th 2018)
    OECD Organization for Economic Co-operation and Development (2010) OECD guidelines for the testing of chemicals test no. 129: guidance document on using cytotoxicity tests to estimate starting doses for acute oral systemic toxicity tests. Available at: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono (2010)20&doclanguage=en (last accessed March 4th 2018)
    Ortiz D, Guiguemde WA, Hammill JT, Carrillo AK, Chen Y, Connelly M, Stalheim K, Elya C, Johnson A, Min J, Shelat A, Smithson DC, Yang L, Zhu F, Guy RK, Landfear SM (2017) Discovery of novel, orally bioavailable, antileishmanial compounds using phenotypic screening. PLoS Negl Trop Dis 11:e0006157
    Passalacqua TG, Dutra LA, de Almeida L, Velásquez AM, Torres FA, Yamasaki PR, Dos Santos MB, Regasini LO, Michels PA, Bolzani VS, Graminha MA (2015a) Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds. Bioorg Med Chem Lett 25:3342–3345
    Passalacqua TG, Torres FA, Nogueira CT, de Almeida L, Del Cistia ML, Dos Santos MB, Dutra LA, Bolzani VS, Regasini LO, Graminha MA, Marchetto R, Zottis A (2015b) The 2′,4′-dihydroxychalcone could be explored to develop new inhibitors against the glycerol-3-phosphate dehydrogenase from Leishmania species. Bioorg Med Chem Lett 25:3564–3568
    Pinto MC, Da Rosa JA, Fernandes ZMT, Graminha MAS, Mine JC, Allegretti SM, Delort S, Riedel C, Paes EL, Cupolillo E (2005) Isolation and isoenzyme characterization of Leishmania (Viannia) braziliensis from a case of human cutaneous leishmaniasis in northeast centre of the state of São Paulo. Mem Inst Oswaldo Cruz 100:733–734
    Pinto MC, Barbieri K, Silva MC, Graminha MA, Casanova C, Andrade AJ, Eiras AE (2011) Octenol as attractant to Nyssomyia neivai (Diptera:Psychodidae:Phlebotominae) in the field. J Med Entomol 48:39–44
    Rajamanikyam M, Vadlapudi V, Parvathaneni SP, Koude D, Sripadi P, Misra S, Amanchy R, Upadhyayula SM (2017) Isolation and characterization of phthalates from Brevibacterium mcbrellneri that cause cytotoxicity and cell cycle arrest. EXCLI J 16:375–387
    Roussis V, Tsoukatou M, Petrakis PV, Chinou I, Skoula M, Harborne JB (2000) Volatile constituents of four Helichrysum species growing in Greece. Biochem Syst Ecol 28:163–175
    Ruffell SE, Müller KM, McConkey BJ (2016) Comparative assessment of microalgal fatty acids as topical antibiotics. J Appl Phycol 28:1695–1704
    Saeidnia S, Abdollahi M (2013) Are medicinal plants polluted with phthalates? Daru 21:43
    Santos VA, Regasini LO, Nogueira CR, Passerini GD, Martinez I, Bolzani VS, Graminha MA, Cicarelli RM, Furlan M (2012) Antiprotozoal sesquiterpene pyridine alkaloids from Maytenus ilicifolia. J Nat Prod 75:991–995
    Singh N, Kumar M, Singh RK (2012) Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med 5:485–497
    Soares DC, Calegari-Silva TC, Lopes UG, Teixeira VL, Paixão ICNP, Cirne-Santos C, Bou-Habib DC, Saraiva EM (2012) Dolabelladienetriol, a compound from Dictyota pfaffii algae, inhibits the infection by Leishmania amazonensis. PLoS Negl Trop Dis 6:e1787
    Soares DC, Szlachta MM, Teixeira VL, Soares AR, Saraiva EM (2016) The brown alga Stypopodium zonale (Dictyotaceae): a potential source of anti-Leishmania drugs. Mar Drugs 14:E163
    Sundar S, Rai M (2002) Advances in the treatment of leishmaniasis. Curr Opin Infect Dis 15:593–598
    Sundar S, Mehta H, Suresh AV, Singh SP, Rai M, Murray HW (2004) Amphotericin B treatment for Indian visceral leishmaniasis: conventional versus lipid formulations. Clin Infect Dis 38:377–383
    Sundar S, Chakravarty J (2015) An update on pharmacotherapy for leishmaniasis. Expert Opin Pharmacother 16:237–252
    Tajuddeen N, Isah MB, Suleiman MA, Van Heerden FR, Ibrahim MA (2018) The chemotherapeutic potential of chalcones against leishmaniases: a review. Int J Antimicrob Agents 51:311–318
    Tchokouaha Yamthe LR, Appiah-Opong R, Tsouh Fokou PV, Tsabang N, Fekam Boyom F, Nyarko AK, Wilson MD (2017) Marine algae as source of novel antileishmanial drugs: a review. Mar Drugs 15:E323
    Torres FAE, Passalacqua TG, Velásquez AMA, Souza RA, Colepicolo P, Graminha MAS (2014) New drugs with antiprotozoal activity from marine algae: a review. Rev Bras Farmacogn 24:265–276
    Van Griensven J, Diro E (2012) Visceral leishmaniasis. Infec Dis Clin North Am 26:309–322
    Waaland JR (1973) Experimental studies on the marine algae Iridaea and Gigartina. J Exp Mar Bio Ecol 11:71–80
    WHO World Health Organization (2018) Neglected tropical diseases. Leishmaniasis. Available at: http://www.who.int/neglected_diseases/diseases/en/ ; http://www.who.int/leishmaniasis/disease/en/ (last accessed March 4th 2018)
    Winterhalter P, Herderich M, Schreier P (1990) 4-Hydroxy-7,8-dihydro-β-ionone and isomeric megastigma-6,8-dien-4-ones: new C13 norisoprenoids in quince (Cydonia oblonga, Mill.) fruit. J. Agric Food Chem 38:796–799
    Xu L-L, Han T, Wu J-Z, Zhang Q-Y, Zhang H, Huang B-K, Rahman K (2009) Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine 16:609–616

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021